ﻻ يوجد ملخص باللغة العربية
Single molecule localization microscopy has the potential to resolve structural details of biological samples at the nanometer length scale. However, to fully exploit the resolution it is crucial to account for the anisotropic emission characteristics of fluorescence dipole emitters. In case of slight residual defocus, localization estimates may well be biased by tens of nanometers. We show here that astigmatic imaging in combination with information about the dipole orientation allows to extract the position of the dipole emitters without localization bias and down to a precision of ~1nm, thereby reaching the corresponding Cram{e}r Rao bound. The approach is showcased with simulated data for various dipole orientations, and parameter settings realistic for real life experiments.
It is challenged only recently that the precision attainable in any measurement of a physical parameter is fundamentally limited by the quantum Cram{e}r-Rao Bound (QCRB). Here, targeting at measuring parameters in strongly dissipative systems, we pro
The variance and the entropy power of a continuous random variable are bounded from below by the reciprocal of its Fisher information through the Cram{e}r-Rao bound and the Stams inequality respectively. In this note, we introduce the Fisher informat
We examine the role of information geometry in the context of classical Cramer-Rao (CR) type inequalities. In particular, we focus on Eguchis theory of obtaining dualistic geometric structures from a divergence function and then applying Amari-Nagoak
In this paper, we analyze the impact of compressed sensing with complex random matrices on Fisher information and the Cram{e}r-Rao Bound (CRB) for estimating unknown parameters in the mean value function of a complex multivariate normal distribution.
This is a tutorial aimed at illustrating some recent developments in quantum parameter estimation beyond the Cram`er-Rao bound, as well as their applications in quantum metrology. Our starting point is the observation that there are situations in cla