ﻻ يوجد ملخص باللغة العربية
In this paper, we analyze the impact of compressed sensing with complex random matrices on Fisher information and the Cram{e}r-Rao Bound (CRB) for estimating unknown parameters in the mean value function of a complex multivariate normal distribution. We consider the class of random compression matrices whose distribution is right-orthogonally invariant. The compression matrix whose elements are i.i.d. standard normal random variables is one such matrix. We show that for all such compression matrices, the Fisher information matrix has a complex matrix beta distribution. We also derive the distribution of CRB. These distributions can be used to quantify the loss in CRB as a function of the Fisher information of the non-compressed data. In our numerical examples, we consider a direction of arrival estimation problem and discuss the use of these distributions as guidelines for choosing compression ratios based on the resulting loss in CRB.
The variance and the entropy power of a continuous random variable are bounded from below by the reciprocal of its Fisher information through the Cram{e}r-Rao bound and the Stams inequality respectively. In this note, we introduce the Fisher informat
We examine the role of information geometry in the context of classical Cramer-Rao (CR) type inequalities. In particular, we focus on Eguchis theory of obtaining dualistic geometric structures from a divergence function and then applying Amari-Nagoak
It is challenged only recently that the precision attainable in any measurement of a physical parameter is fundamentally limited by the quantum Cram{e}r-Rao Bound (QCRB). Here, targeting at measuring parameters in strongly dissipative systems, we pro
Deheuvels [J. Multivariate Anal. 11 (1981) 102--113] and Genest and R{e}millard [Test 13 (2004) 335--369] have shown that powerful rank tests of multivariate independence can be based on combinations of asymptotically independent Cram{e}r--von Mises
Single molecule localization microscopy has the potential to resolve structural details of biological samples at the nanometer length scale. However, to fully exploit the resolution it is crucial to account for the anisotropic emission characteristic