ترغب بنشر مسار تعليمي؟ اضغط هنا

Being-ahead: Benchmarking and Exploring Accelerators for Hardware-Efficient AI Deployment

92   0   0.0 ( 0 )
 نشر من قبل Xiaofan Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Customized hardware accelerators have been developed to provide improved performance and efficiency for DNN inference and training. However, the existing hardware accelerators may not always be suitable for handling various DNN models as their architecture paradigms and configuration tradeoffs are highly application-specific. It is important to benchmark the accelerator candidates in the earliest stage to gather comprehensive performance metrics and locate the potential bottlenecks. Further demands also emerge after benchmarking, which require adequate solutions to address the bottlenecks and improve the current designs for targeted workloads. To achieve these goals, in this paper, we leverage an automation tool called DNNExplorer for benchmarking customized DNN hardware accelerators and exploring novel accelerator designs with improved performance and efficiency. Key features include (1) direct support to popular machine learning frameworks for DNN workload analysis and accurate analytical models for fast accelerator benchmarking; (2) a novel accelerator design paradigm with high-dimensional design space support and fine-grained adjustability to overcome the existing design drawbacks; and (3) a design space exploration (DSE) engine to generate optimized accelerators by considering targeted AI workloads and available hardware resources. Results show that accelerators adopting the proposed novel paradigm can deliver up to 4.2X higher throughput (GOP/s) than the state-of-the-art pipeline design in DNNBuilder and up to 2.0X improved efficiency than the recently published generic design in HybridDNN given the same DNN model and resource budgets. With DNNExplorers benchmarking and exploration features, we can be ahead at building and optimizing customized AI accelerators and enable more efficient AI applications.

قيم البحث

اقرأ أيضاً

The use of trusted hardware has become a promising solution to enable privacy-preserving machine learning. In particular, users can upload their private data and models to a hardware-enforced trusted execution environment (e.g. an enclave in Intel SG X-enabled CPUs) and run machine learning tasks in it with confidentiality and integrity guaranteed. To improve performance, AI accelerators have been widely employed for modern machine learning tasks. However, how to protect privacy on an AI accelerator remains an open question. To address this question, we propose a solution for efficient privacy-preserving machine learning based on an unmodified trusted CPU and a customized trusted AI accelerator. We carefully leverage cryptographic primitives to establish trust and protect the channel between the CPU and the accelerator. As a case study, we demonstrate our solution based on the open-source versatile tensor accelerator. The result of evaluation shows that the proposed solution provides efficient privacy-preserving machine learning at a small design cost and moderate performance overhead.
Artificial intelligence (AI) and Machine Learning (ML) are becoming pervasive in todays applications, such as autonomous vehicles, healthcare, aerospace, cybersecurity, and many critical applications. Ensuring the reliability and robustness of the un derlying AI/ML hardware becomes our paramount importance. In this paper, we explore and evaluate the reliability of different AI/ML hardware. The first section outlines the reliability issues in a commercial systolic array-based ML accelerator in the presence of faults engendering from device-level non-idealities in the DRAM. Next, we quantified the impact of circuit-level faults in the MSB and LSB logic cones of the Multiply and Accumulate (MAC) block of the AI accelerator on the AI/ML accuracy. Finally, we present two key reliability issues -- circuit aging and endurance in emerging neuromorphic hardware platforms and present our system-level approach to mitigate them.
The advent of dedicated Deep Learning (DL) accelerators and neuromorphic processors has brought on new opportunities for applying both Deep and Spiking Neural Network (SNN) algorithms to healthcare and biomedical applications at the edge. This can fa cilitate the advancement of medical Internet of Things (IoT) systems and Point of Care (PoC) devices. In this paper, we provide a tutorial describing how various technologies including emerging memristive devices, Field Programmable Gate Arrays (FPGAs), and Complementary Metal Oxide Semiconductor (CMOS) can be used to develop efficient DL accelerators to solve a wide variety of diagnostic, pattern recognition, and signal processing problems in healthcare. Furthermore, we explore how spiking neuromorphic processors can complement their DL counterparts for processing biomedical signals. The tutorial is augmented with case studies of the vast literature on neural network and neuromorphic hardware as applied to the healthcare domain. We benchmark various hardware platforms by performing a sensor fusion signal processing task combining electromyography (EMG) signals with computer vision. Comparisons are made between dedicated neuromorphic processors and embedded AI accelerators in terms of inference latency and energy. Finally, we provide our analysis of the field and share a perspective on the advantages, disadvantages, challenges, and opportunities that various accelerators and neuromorphic processors introduce to healthcare and biomedical domains.
Creating virtual avatars with realistic rendering is one of the most essential and challenging tasks to provide highly immersive virtual reality (VR) experiences. It requires not only sophisticated deep neural network (DNN) based codec avatar decoder s to ensure high visual quality and precise motion expression, but also efficient hardware accelerators to guarantee smooth real-time rendering using lightweight edge devices, like untethered VR headsets. Existing hardware accelerators, however, fail to deliver sufficient performance and efficiency targeting such decoders which consist of multi-branch DNNs and require demanding compute and memory resources. To address these problems, we propose an automation framework, called F-CAD (Facebook Codec avatar Accelerator Design), to explore and deliver optimized hardware accelerators for codec avatar decoding. Novel technologies include 1) a new accelerator architecture to efficiently handle multi-branch DNNs; 2) a multi-branch dynamic design space to enable fine-grained architecture configurations; and 3) an efficient architecture search for picking the optimized hardware design based on both application-specific demands and hardware resource constraints. To the best of our knowledge, F-CAD is the first automation tool that supports the whole design flow of hardware acceleration of codec avatar decoders, allowing joint optimization on decoder designs in popular machine learning frameworks and corresponding customized accelerator design with cycle-accurate evaluation. Results show that the accelerators generated by F-CAD can deliver up to 122.1 frames per second (FPS) and 91.6% hardware efficiency when running the latest codec avatar decoder. Compared to the state-of-the-art designs, F-CAD achieves 4.0X and 2.8X higher throughput, 62.5% and 21.2% higher efficiency than DNNBuilder and HybridDNN by targeting the same hardware device.
Tiled spatial architectures have proved to be an effective solution to build large-scale DNN accelerators. In particular, interconnections between tiles are critical for high performance in these tile-based architectures. In this work, we identify th e inefficiency of the widely used traditional on-chip networks and the opportunity of software-hardware co-design. We propose METRO with the basic idea of decoupling the traffic scheduling policies from hardware fabrics and moving them to the software level. METRO contains two modules working in synergy: METRO software scheduling framework to coordinate the traffics and METRO hardware facilities to deliver the data based on software configurations. We evaluate the co-design using different flit sizes for synthetic study, illustrating its effectiveness under various hardware resource constraints, in addition to a wide range of DNN models selected from real-world workloads. The results show that METRO achieves 56.3% communication speedup on average and up to 73.6% overall processing time reduction compared with traditional on-chip network designs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا