ﻻ يوجد ملخص باللغة العربية
Customized hardware accelerators have been developed to provide improved performance and efficiency for DNN inference and training. However, the existing hardware accelerators may not always be suitable for handling various DNN models as their architecture paradigms and configuration tradeoffs are highly application-specific. It is important to benchmark the accelerator candidates in the earliest stage to gather comprehensive performance metrics and locate the potential bottlenecks. Further demands also emerge after benchmarking, which require adequate solutions to address the bottlenecks and improve the current designs for targeted workloads. To achieve these goals, in this paper, we leverage an automation tool called DNNExplorer for benchmarking customized DNN hardware accelerators and exploring novel accelerator designs with improved performance and efficiency. Key features include (1) direct support to popular machine learning frameworks for DNN workload analysis and accurate analytical models for fast accelerator benchmarking; (2) a novel accelerator design paradigm with high-dimensional design space support and fine-grained adjustability to overcome the existing design drawbacks; and (3) a design space exploration (DSE) engine to generate optimized accelerators by considering targeted AI workloads and available hardware resources. Results show that accelerators adopting the proposed novel paradigm can deliver up to 4.2X higher throughput (GOP/s) than the state-of-the-art pipeline design in DNNBuilder and up to 2.0X improved efficiency than the recently published generic design in HybridDNN given the same DNN model and resource budgets. With DNNExplorers benchmarking and exploration features, we can be ahead at building and optimizing customized AI accelerators and enable more efficient AI applications.
The use of trusted hardware has become a promising solution to enable privacy-preserving machine learning. In particular, users can upload their private data and models to a hardware-enforced trusted execution environment (e.g. an enclave in Intel SG
Artificial intelligence (AI) and Machine Learning (ML) are becoming pervasive in todays applications, such as autonomous vehicles, healthcare, aerospace, cybersecurity, and many critical applications. Ensuring the reliability and robustness of the un
The advent of dedicated Deep Learning (DL) accelerators and neuromorphic processors has brought on new opportunities for applying both Deep and Spiking Neural Network (SNN) algorithms to healthcare and biomedical applications at the edge. This can fa
Creating virtual avatars with realistic rendering is one of the most essential and challenging tasks to provide highly immersive virtual reality (VR) experiences. It requires not only sophisticated deep neural network (DNN) based codec avatar decoder
Tiled spatial architectures have proved to be an effective solution to build large-scale DNN accelerators. In particular, interconnections between tiles are critical for high performance in these tile-based architectures. In this work, we identify th