ﻻ يوجد ملخص باللغة العربية
Artificial intelligence (AI) and Machine Learning (ML) are becoming pervasive in todays applications, such as autonomous vehicles, healthcare, aerospace, cybersecurity, and many critical applications. Ensuring the reliability and robustness of the underlying AI/ML hardware becomes our paramount importance. In this paper, we explore and evaluate the reliability of different AI/ML hardware. The first section outlines the reliability issues in a commercial systolic array-based ML accelerator in the presence of faults engendering from device-level non-idealities in the DRAM. Next, we quantified the impact of circuit-level faults in the MSB and LSB logic cones of the Multiply and Accumulate (MAC) block of the AI accelerator on the AI/ML accuracy. Finally, we present two key reliability issues -- circuit aging and endurance in emerging neuromorphic hardware platforms and present our system-level approach to mitigate them.
Customized hardware accelerators have been developed to provide improved performance and efficiency for DNN inference and training. However, the existing hardware accelerators may not always be suitable for handling various DNN models as their archit
Hardware flaws are permanent and potent: hardware cannot be patched once fabricated, and any flaws may undermine any software executing on top. Consequently, verification time dominates implementation time. The gold standard in hardware Design Verifi
Programmable switches have emerged as powerful and flexible alternatives to fixed-function forwarding devices. But because of the unique hardware constraints of network switches, the design and implementation of compilers targeting these devices is t
The current mobile applications have rapidly growing memory footprints, posing a great challenge for memory system design. Insufficient DRAM main memory will incur frequent data swaps between memory and storage, a process that hurts performance, cons
Polar codes are a class of linear block codes that provably achieves channel capacity. They have been selected as a coding scheme for the control channel of enhanced mobile broadband (eMBB) scenario for $5^{text{th}}$ generation wireless communicatio