ﻻ يوجد ملخص باللغة العربية
With quantum computing technologies nearing the era of commercialization and quantum supremacy, machine learning (ML) appears as one of the promising killer applications. Despite significant effort, there has been a disconnect between most quantum ML proposals, the needs of ML practitioners, and the capabilities of near-term quantum devices to demonstrate quantum enhancement in the near future. In this contribution to the focus collection on What would you do with 1000 qubits?, we provide concrete examples of intractable ML tasks that could be enhanced with near-term devices. We argue that to reach this target, the focus should be on areas where ML researchers are struggling, such as generative models in unsupervised and semi-supervised learning, instead of the popular and more tractable supervised learning techniques. We also highlight the case of classical datasets with potential quantum-like statistical correlations where quantum models could be more suitable. We focus on hybrid quantum-classical approaches and illustrate some of the key challenges we foresee for near-term implementations. Finally, we introduce the quantum-assisted Helmholtz machine (QAHM), an attempt to use near-term quantum devices to tackle high-dimensional datasets of continuous variables. Instead of using quantum computers to assist deep learning, as previous approaches do, the QAHM uses deep learning to extract a low-dimensional binary representation of data, suitable for relatively small quantum processors which can assist the training of an unsupervised generative model. Although we illustrate this concept on a quantum annealer, other quantum platforms could benefit as well from this hybrid quantum-classical framework.
Noisy intermediate-scale quantum computing devices are an exciting platform for the exploration of the power of near-term quantum applications. Performing nontrivial tasks in such devices requires a fundamentally different approach than what would be
The concept of quantum computing has inspired a whole new generation of scientists, including physicists, engineers, and computer scientists, to fundamentally change the landscape of information technology. With experimental demonstrations stretching
Noisy, intermediate-scale quantum (NISQ) computing devices have become an industrial reality in the last few years, and cloud-based interfaces to these devices are enabling exploration of near-term quantum computing on a range of problems. As NISQ de
Quantum computers are capable of efficiently contracting unitary tensor networks, a task that is likely to remain difficult for classical computers. For instance, networks based on matrix product states or the multi-scale entanglement renormalization
We present a quantum chemistry benchmark for noisy intermediate-scale quantum computers that leverages the variational quantum eigensolver, active space reduction, a reduced unitary coupled cluster ansatz, and reduced density purification as error mi