ترغب بنشر مسار تعليمي؟ اضغط هنا

Query2Prod2Vec Grounded Word Embeddings for eCommerce

96   0   0.0 ( 0 )
 نشر من قبل Bingqing Yu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Query2Prod2Vec, a model that grounds lexical representations for product search in product embeddings: in our model, meaning is a mapping between words and a latent space of products in a digital shop. We leverage shopping sessions to learn the underlying space and use merchandising annotations to build lexical analogies for evaluation: our experiments show that our model is more accurate than known techniques from the NLP and IR literature. Finally, we stress the importance of data efficiency for product search outside of retail giants, and highlight how Query2Prod2Vec fits with practical constraints faced by most practitioners.



قيم البحث

اقرأ أيضاً

Popular approaches to natural language processing create word embeddings based on textual co-occurrence patterns, but often ignore embodied, sensory aspects of language. Here, we introduce the Python package comp-syn, which provides grounded word emb eddings based on the perceptually uniform color distributions of Google Image search results. We demonstrate that comp-syn significantly enriches models of distributional semantics. In particular, we show that (1) comp-syn predicts human judgments of word concreteness with greater accuracy and in a more interpretable fashion than word2vec using low-dimensional word-color embeddings, and (2) comp-syn performs comparably to word2vec on a metaphorical vs. literal word-pair classification task. comp-syn is open-source on PyPi and is compatible with mainstream machine-learning Python packages. Our package release includes word-color embeddings for over 40,000 English words, each associated with crowd-sourced word concreteness judgments.
In this paper a framework for Automatic Query Expansion (AQE) is proposed using distributed neural language model word2vec. Using semantic and contextual relation in a distributed and unsupervised framework, word2vec learns a low dimensional embeddin g for each vocabulary entry. Using such a framework, we devise a query expansion technique, where related terms to a query are obtained by K-nearest neighbor approach. We explore the performance of the AQE methods, with and without feedback query expansion, and a variant of simple K-nearest neighbor in the proposed framework. Experiments on standard TREC ad-hoc data (Disk 4, 5 with query sets 301-450, 601-700) and web data (WT10G data with query set 451-550) shows significant improvement over standard term-overlapping based retrieval methods. However the proposed method fails to achieve comparable performance with statistical co-occurrence based feedback method such as RM3. We have also found that the word2vec based query expansion methods perform similarly with and without any feedback information.
We present a probabilistic language model for time-stamped text data which tracks the semantic evolution of individual words over time. The model represents words and contexts by latent trajectories in an embedding space. At each moment in time, the embedding vectors are inferred from a probabilistic version of word2vec [Mikolov et al., 2013]. These embedding vectors are connected in time through a latent diffusion process. We describe two scalable variational inference algorithms--skip-gram smoothing and skip-gram filtering--that allow us to train the model jointly over all times; thus learning on all data while simultaneously allowing word and context vectors to drift. Experimental results on three different corpora demonstrate that our dynamic model infers word embedding trajectories that are more interpretable and lead to higher predictive likelihoods than competing methods that are based on static models trained separately on time slices.
Radiology reports are a rich resource for advancing deep learning applications in medicine by leveraging the large volume of data continuously being updated, integrated, and shared. However, there are significant challenges as well, largely due to th e ambiguity and subtlety of natural language. We propose a hybrid strategy that combines semantic-dictionary mapping and word2vec modeling for creating dense vector embeddings of free-text radiology reports. Our method leverages the benefits of both semantic-dictionary mapping as well as unsupervised learning. Using the vector representation, we automatically classify the radiology reports into three classes denoting confidence in the diagnosis of intracranial hemorrhage by the interpreting radiologist. We performed experiments with varying hyperparameter settings of the word embeddings and a range of different classifiers. Best performance achieved was a weighted precision of 88% and weighted recall of 90%. Our work offers the potential to leverage unstructured electronic health record data by allowing direct analysis of narrative clinical notes.
This work lists and describes the main recent strategies for building fixed-length, dense and distributed representations for words, based on the distributional hypothesis. These representations are now commonly called word embeddings and, in additio n to encoding surprisingly good syntactic and semantic information, have been proven useful as extra features in many downstream NLP tasks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا