ﻻ يوجد ملخص باللغة العربية
The bulk-boundary and a new bulk-defect correspondence principles are formulated using groupoid algebras. The new strategy relies on the observation that the groupoids of lattices with boundaries or defects display spaces of units with invariant accumulation manifolds, hence they can be naturally split into disjoint unions of open and closed invariant sub-sets. This leads to standard exact sequences of groupoid $C^ast$-algebras that can be used to associate a Kasparov element to a lattice defect and to formulate an extremely general bulk-defect correspondence principle. As an application, we establish a correspondence between topological defects of a 2-dimensional square lattice and Kasparovs group $KK^1 (C^ast(mathbb Z^3),mathbb C)$. Numerical examples of non-trivial bulk-defect correspondences are supplied.
We consider the algebra $dot{mathfrak H}(mathcal L)$ of inner-limit derivations over the ${rm GICAR}$ algebra of a fermion gas populating an aperiodic Delone set $mathcal L$. Under standard physical assumptions such as finite interaction range, Galil
We construct topological defects in two-dimensional classical lattice models and quantum chains. The defects satisfy local commutation relations guaranteeing that the partition function is independent of their path. These relations and their solution
Recently, examples of an index theory for KMS states of circle actions were discovered, cite{CPR2,CRT}. We show that these examples are not isolated. Rather there is a general framework in which we use KMS states for circle actions on a C*-algebra A
In this paper and its sequel, we construct topologically invariant defects in two-dimensional classical lattice models and quantum spin chains. We show how defect lines commute with the transfer matrix/Hamiltonian when they obey the defect commutatio
By considering the general properties of approximate units in differentiable algebras, we are able to present a unified approach to characterising completeness of spectral metric spaces, existence of connections on modules, and the lifting of Kasparo