ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological Defects on the Lattice: Dualities and Degeneracies

91   0   0.0 ( 0 )
 نشر من قبل David Aasen
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct topological defects in two-dimensional classical lattice models and quantum chains. The defects satisfy local commutation relations guaranteeing that the partition function is independent of their path. These relations and their solutions are extended to allow defect lines to fuse, branch and satisfy all the properties of a fusion category. We show how the two-dimensional classical lattice models and their topological defects are naturally described by boundary conditions of a Turaev-Viro-Barrett-Westbury partition function. These defects allow Kramers-Wannier duality to be generalized to a large class of models, explaining exact degeneracies between non-symmetry-related ground states as well as in the low-energy spectrum. They give a precise and general notion of twisted boundary conditions and the universal behaviour under Dehn twists. Gluing a topological defect to a boundary yields linear identities between partition functions with different boundary conditions, allowing ratios of the universal g-factor to be computed exactly on the lattice. We develop this construction in detail in a variety of examples, including the Potts, parafermion and height models.



قيم البحث

اقرأ أيضاً

In this paper and its sequel, we construct topologically invariant defects in two-dimensional classical lattice models and quantum spin chains. We show how defect lines commute with the transfer matrix/Hamiltonian when they obey the defect commutatio n relations, cousins of the Yang-Baxter equation. These relations and their solutions can be extended to allow defect lines to branch and fuse, again with properties depending only on topology. In this part I, we focus on the simplest example, the Ising model. We define lattice spin-flip and duality defects and their branching, and prove they are topological. One useful consequence is a simple implementation of Kramers-Wannier duality on the torus and higher genus surfaces by using the fusion of duality defects. We use these topological defects to do simple calculations that yield exact properties of the conformal field theory describing the continuum limit. For example, the shift in momentum quantization with duality-twisted boundary conditions yields the conformal spin 1/16 of the chiral spin field. Even more strikingly, we derive the modular transformation matrices explicitly and exactly.
178 - E. Cobanera , 2009
We show how classical and quantum dualities, as well as duality relations that appear only in a sector of certain theories (emergent dualities), can be unveiled, and systematically established. Our method relies on the use of morphisms of the bond al gebra of a quantum Hamiltonian. Dualities are characterized as unitary mappings implementing such morphisms, whose even powers become symmetries of the quantum problem. Dual variables -which were guessed in the past- can be derived in our formalism. We obtain new self-dualities for four-dimensional Abelian gauge field theories.
We introduce and analyze a quantum spin/Majorana chain with a tricritical Ising point separating a critical phase from a gapped phase with order-disorder coexistence. We show that supersymmetry is not only an emergent property of the scaling limit, b ut manifests itself on the lattice. Namely, we find explicit lattice expressions for the supersymmetry generators and currents. Writing the Hamiltonian in terms of these generators allows us to find the ground states exactly at a frustration-free coupling. These confirm the coexistence between two (topologically) ordered ground states and a disordered one in the gapped phase. Deforming the model by including explicit chiral symmetry breaking, we find the phases persist up to an unusual chiral phase transition where the supersymmetry becomes exact even on the lattice.
Recently it was highlighted that one-dimensional antiferromagnetic spin models with frustrated boundary conditions, i.e. periodic boundary conditions in a ring with an odd number of elements, may show very peculiar behavior. Indeed the presence of fr ustrated boundary conditions can destroy the magnetic order that characterizes such models when different boundary conditions are taken into account and induce novel phase transitions. Motivated by these results, we analyze the effects of the frustrated boundary conditions on several models supporting topological orders. In particular, we focus on the Cluster-Ising model, which presents a symmetry protected topologically ordered phase, and the Kitaev and AKLT chains that, on the contrary, are characterized by a purely topological order. In all these models we find that the different topological orders are not affected by the frustrated boundary conditions. This observation leads naturally to the conjecture that systems supporting topological order are resilient to topological frustration, and thus that topological phases could be identified through this resilience.
Ginzburg-Landau theory of continuous phase transitions implicitly assumes that microscopic changes are negligible in determining the thermodynamic properties of the system. In this work we provide an example that clearly contrasts with this assumptio n. We show that topological frustration can change the nature of a second order quantum phase transition separating two different ordered phases. Even more remarkably, frustration is triggered simply by a suitable choice of boundary conditions in a 1D chain. While with every other BC each of two phases is characterized by its own local order parameter, with frustration no local order can survive. We construct string order parameters to distinguish the two phases, but, having proved that topological frustration is capable of altering the nature of a systems phase transition, our results pose a clear challenge to the current understanding of phase transitions in complex quantum systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا