ترغب بنشر مسار تعليمي؟ اضغط هنا

Automating Transfer Credit Assessment in Student Mobility -- A Natural Language Processing-based Approach

165   0   0.0 ( 0 )
 نشر من قبل Dhivya Chandrasekaran
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Student mobility or academic mobility involves students moving between institutions during their post-secondary education, and one of the challenging tasks in this process is to assess the transfer credits to be offered to the incoming student. In general, this process involves domain experts comparing the learning outcomes of the courses, to decide on offering transfer credits to the incoming students. This manual implementation is not only labor-intensive but also influenced by undue bias and administrative complexity. The proposed research article focuses on identifying a model that exploits the advancements in the field of Natural Language Processing (NLP) to effectively automate this process. Given the unique structure, domain specificity, and complexity of learning outcomes (LOs), a need for designing a tailor-made model arises. The proposed model uses a clustering-inspired methodology based on knowledge-based semantic similarity measures to assess the taxonomic similarity of LOs and a transformer-based semantic similarity model to assess the semantic similarity of the LOs. The similarity between LOs is further aggregated to form course to course similarity. Due to the lack of quality benchmark datasets, a new benchmark dataset containing seven course-to-course similarity measures is proposed. Understanding the inherent need for flexibility in the decision-making process the aggregation part of the model offers tunable parameters to accommodate different scenarios. While providing an efficient model to assess the similarity between courses with existing resources, this research work steers future research attempts to apply NLP in the field of articulation in an ideal direction by highlighting the persisting research gaps.

قيم البحث

اقرأ أيضاً

386 - Mariya Toneva , Leila Wehbe 2019
Neural networks models for NLP are typically implemented without the explicit encoding of language rules and yet they are able to break one performance record after another. This has generated a lot of research interest in interpreting the representa tions learned by these networks. We propose here a novel interpretation approach that relies on the only processing system we have that does understand language: the human brain. We use brain imaging recordings of subjects reading complex natural text to interpret word and sequence embeddings from 4 recent NLP models - ELMo, USE, BERT and Transformer-XL. We study how their representations differ across layer depth, context length, and attention type. Our results reveal differences in the context-related representations across these models. Further, in the transformer models, we find an interaction between layer depth and context length, and between layer depth and attention type. We finally hypothesize that altering BERT to better align with brain recordings would enable it to also better understand language. Probing the altered BERT using syntactic NLP tasks reveals that the model with increased brain-alignment outperforms the original model. Cognitive neuroscientists have already begun using NLP networks to study the brain, and this work closes the loop to allow the interaction between NLP and cognitive neuroscience to be a true cross-pollination.
Reliable uncertainty quantification is a first step towards building explainable, transparent, and accountable artificial intelligent systems. Recent progress in Bayesian deep learning has made such quantification realizable. In this paper, we propos e novel methods to study the benefits of characterizing model and data uncertainties for natural language processing (NLP) tasks. With empirical experiments on sentiment analysis, named entity recognition, and language modeling using convolutional and recurrent neural network models, we show that explicitly modeling uncertainties is not only necessary to measure output confidence levels, but also useful at enhancing model performances in various NLP tasks.
Signed languages are the primary means of communication for many deaf and hard of hearing individuals. Since signed languages exhibit all the fundamental linguistic properties of natural language, we believe that tools and theories of Natural Languag e Processing (NLP) are crucial towards its modeling. However, existing research in Sign Language Processing (SLP) seldom attempt to explore and leverage the linguistic organization of signed languages. This position paper calls on the NLP community to include signed languages as a research area with high social and scientific impact. We first discuss the linguistic properties of signed languages to consider during their modeling. Then, we review the limitations of current SLP models and identify the open challenges to extend NLP to signed languages. Finally, we urge (1) the adoption of an efficient tokenization method; (2) the development of linguistically-informed models; (3) the collection of real-world signed language data; (4) the inclusion of local signed language communities as an active and leading voice in the direction of research.
140 - Ming Liu , Stella Ho , Mengqi Wang 2021
Federated Learning aims to learn machine learning models from multiple decentralized edge devices (e.g. mobiles) or servers without sacrificing local data privacy. Recent Natural Language Processing techniques rely on deep learning and large pre-trai ned language models. However, both big deep neural and language models are trained with huge amounts of data which often lies on the server side. Since text data is widely originated from end users, in this work, we look into recent NLP models and techniques which use federated learning as the learning framework. Our survey discusses major challenges in federated natural language processing, including the algorithm challenges, system challenges as well as the privacy issues. We also provide a critical review of the existing Federated NLP evaluation methods and tools. Finally, we highlight the current research gaps and future directions.
As the use of deep learning techniques has grown across various fields over the past decade, complaints about the opaqueness of the black-box models have increased, resulting in an increased focus on transparency in deep learning models. This work in vestigates various methods to improve the interpretability of deep neural networks for natural language processing (NLP) tasks, including machine translation and sentiment analysis. We provide a comprehensive discussion on the definition of the term textit{interpretability} and its various aspects at the beginning of this work. The methods collected and summarised in this survey are only associated with local interpretation and are divided into three categories: 1) explaining the models predictions through related input features; 2) explaining through natural language explanation; 3) probing the hidden states of models and word representations.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا