ﻻ يوجد ملخص باللغة العربية
An edge stream is a common form of presentation of dynamic networks. It can evolve with time, with new types of nodes or edges being continuously added. Existing methods for anomaly detection rely on edge occurrence counts or compare pattern snippets found in historical records. In this work, we propose Isconna, which focuses on both the frequency and the pattern of edge records. The burst detection component targets anomalies between individual timestamps, while the pattern detection component highlights anomalies across segments of timestamps. These two components together produce three intermediate scores, which are aggregated into the final anomaly score. Isconna does not actively explore or maintain pattern snippets; it instead measures the consecutive presence and absence of edge records. Isconna is an online algorithm, it does not keep the original information of edge records; only statistical values are maintained in a few count-min sketches (CMS). Isconnas space complexity $O(rc)$ is determined by two user-specific parameters, the size of CMSs. In worst case, Isconnas time complexity can be up to $O(rc)$, but it can be amortized in practice. Experiments show that Isconna outperforms five state-of-the-art frequency- and/or pattern-based baselines on six real-world datasets with up to 20 million edge records.
Given a stream of graph edges from a dynamic graph, how can we assign anomaly scores to edges and subgraphs in an online manner, for the purpose of detecting unusual behavior, using constant time and memory? For example, in intrusion detection, exist
Anomaly detection plays a crucial role in various real-world applications, including healthcare and finance systems. Owing to the limited number of anomaly labels in these complex systems, unsupervised anomaly detection methods have attracted great a
Outlier detection and novelty detection are two important topics for anomaly detection. Suppose the majority of a dataset are drawn from a certain distribution, outlier detection and novelty detection both aim to detect data samples that do not fit t
Anomaly detection is an important research problem because anomalies often contain critical insights for understanding the unusual behavior in data. One type of anomaly detection approach is dependency-based, which identifies anomalies by examining t
We consider the problem of finding anomalies in high-dimensional data using popular PCA based anomaly scores. The naive algorithms for computing these scores explicitly compute the PCA of the covariance matrix which uses space quadratic in the dimens