ﻻ يوجد ملخص باللغة العربية
Perfectly controlled molecules are at the forefront of the quest to explore chemical reactivity at ultra low temperatures. Here, we investigate for the first time the formation of the long-lived intermediates in the time-dependent scattering of cold bialkali $^{23}$Na$^{87}$Rb molecules with and without the presence of infrared trapping light. During the nearly 50 nanoseconds mean collision time of the intermediate complex, we observe unconventional roaming when for a few tens of picoseconds either NaRb or Na$_2$ and Rb$_2$ molecules with large relative separation are formed before returning to the four-atom complex. We also determine the likelihood of molecular loss when the trapping laser is present during the collision. We find that at a wavelength of 1064 nm the Na$_2$Rb$_2$ complex is quickly destroyed and thus that the $^{23}$Na$^{87}$Rb molecules are rapidly lost.
A model Hamiltonian for the reaction CH$_4^+ rightarrow$ CH$_3^+$ + H, parametrized to exhibit either early or late inner transition states, is employed to investigate the dynamical characteristics of the roaming mechanism. Tight/loose transition sta
A reduced two dimensional model is used to study Ketene isomerization reaction. In light of recent results by Ulusoy textit{et al.} [J. Phys. Chem. A {bf 117}, 7553 (2013)], the present work focuses on the generalization of the roaming mechanism to t
This review article discusses advances in the use of time-resolved photoelectron spectroscopy for the study of non-adiabatic processes in molecules. A theoretical treatment of the experiments is presented together with a number of experimental examples.
Nuclear magnetic resonance (NMR) spectroscopy provides detailed information pertaining to dynamic processes through line-shape changes, which have been traditionally limited to equilibrium conditions. However, there is a wealth of information to be g
We report a novel experimental technique to investigate ultrafast dynamics in photoexcited molecules by probing the third-order nonlinear optical susceptibility. A non-colinear 3-pulse scheme is developed to probe the ultrafast dynamics of excited el