ترغب بنشر مسار تعليمي؟ اضغط هنا

Roaming pathways and survival probability in real-time collisional dynamics of cold and controlled bialkali molecules

96   0   0.0 ( 0 )
 نشر من قبل Svetlana Kotochigova
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Perfectly controlled molecules are at the forefront of the quest to explore chemical reactivity at ultra low temperatures. Here, we investigate for the first time the formation of the long-lived intermediates in the time-dependent scattering of cold bialkali $^{23}$Na$^{87}$Rb molecules with and without the presence of infrared trapping light. During the nearly 50 nanoseconds mean collision time of the intermediate complex, we observe unconventional roaming when for a few tens of picoseconds either NaRb or Na$_2$ and Rb$_2$ molecules with large relative separation are formed before returning to the four-atom complex. We also determine the likelihood of molecular loss when the trapping laser is present during the collision. We find that at a wavelength of 1064 nm the Na$_2$Rb$_2$ complex is quickly destroyed and thus that the $^{23}$Na$^{87}$Rb molecules are rapidly lost.

قيم البحث

اقرأ أيضاً

A model Hamiltonian for the reaction CH$_4^+ rightarrow$ CH$_3^+$ + H, parametrized to exhibit either early or late inner transition states, is employed to investigate the dynamical characteristics of the roaming mechanism. Tight/loose transition sta tes and conventional/roaming reaction pathways are identified in terms of time-invariant objects in phase space. These are dividing surfaces associated with normally hyperbolic invariant manifolds (NHIMs). For systems with two degrees of freedom NHIMS are unstable periodic orbits which, in conjunction with their stable and unstable manifolds, unambiguously define the (locally) non-recrossing dividing surfaces assumed in statistical theories of reaction rates. By constructing periodic orbit continuation/bifurcation diagrams for two values of the potential function parameter corresponding to late and early transition states, respectively, and using the total energy as another parameter, we dynamically assign different regions of phase space to reactants and products as well as to conventional and roaming reaction pathways. The classical dynamics of the system are investigated by uniformly sampling trajectory initial conditions on the dividing surfaces. Trajectories are classified into four different categories: direct reactive and non reactive trajectories,which lead to the formation of molecular and radical products respectively, and roaming reactive and non reactive orbiting trajectories, which represent alternative pathways to form molecular and radical products. By analysing gap time distributions at several energies we demonstrate that the phase space structure of the roaming region, which is strongly influenced by non-linear resonances between the two degrees of freedom, results in nonexponential (nonstatistical) decay.
A reduced two dimensional model is used to study Ketene isomerization reaction. In light of recent results by Ulusoy textit{et al.} [J. Phys. Chem. A {bf 117}, 7553 (2013)], the present work focuses on the generalization of the roaming mechanism to t he Ketene isomerization reaction by applying our phase space approach previously used to elucidate the roaming phenomenon in ion-molecule reactions. Roaming is again found be associated with the trapping of trajectories in a phase space region between two dividing surfaces; trajectories are classified as reactive or nonreactive, and are further naturally classified as direct or non-direct (roaming). The latter long-lived trajectories are trapped in the region of non-linear mechanical resonances, which in turn define alternative reaction pathways in phase space. It is demonstrated that resonances associated with periodic orbits provide a dynamical explanation of the quantum mechanical resonances found in the isomerization rate constant calculations by Gezelter and Miller [J. Chem. Phys. {bf 103}, 7868-7876 (1995)]. Evidence of the trapping of trajectories by `sticky resonant periodic orbits is provided by plotting Poincare surfaces of section, and a gap time analysis is carried out in order to investigate the statistical assumption inherent in transition state theory for Ketene isomerization.
This review article discusses advances in the use of time-resolved photoelectron spectroscopy for the study of non-adiabatic processes in molecules. A theoretical treatment of the experiments is presented together with a number of experimental examples.
Nuclear magnetic resonance (NMR) spectroscopy provides detailed information pertaining to dynamic processes through line-shape changes, which have been traditionally limited to equilibrium conditions. However, there is a wealth of information to be g ained by studying chemical reactions under off-equilibrium conditions -- e.g., in states that arise upon mixing reactants that subsequently undergo chemical changes -- and in monitoring the formation of reaction products in real time. Herein, we propose and demonstrate a time-resolved kinetic NMR experiment that combines rapid mixing techniques, continuous flow, and single-scan spectroscopic imaging methods, leading in unison to a new 2D spectro-temporal NMR correlation which provides high-quality kinetic information of off-equilibrium dynamics. These kinetic 2D NMR spectra possess a spectral dimension conveying with high resolution the individual chemical sites, correlated with a time-independent, steady-state spatial axis that delivers unique information concerning temporal changes along the chemical reaction coordinate. A comprehensive description of the kinetic and spectroscopic features associated to these spectro-temporal NMR analyses is presented, factoring in the rapid-mixing, the flow and the spectroscopic NMR imaging. An experimental demonstration of this methods novel aspects was carried out using an enzymatically catalyzed reaction, leading to site- and time-resolved kinetic NMR data that are in excellent agreement with control experiments and literature values.
We report a novel experimental technique to investigate ultrafast dynamics in photoexcited molecules by probing the third-order nonlinear optical susceptibility. A non-colinear 3-pulse scheme is developed to probe the ultrafast dynamics of excited el ectronic states using the optical Kerr effect by time-resolved polarization spectroscopy. Optical heterodyne and optical homodyne detection are demonstrated to measure the third-order nonlinear optical response for the S1 excited state of liquid nitrobenzene, which is populated by 2-photon absorption of a 780 nm 35 fs excitation pulse.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا