ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-Resolved Ultrafast Transient Polarization Spectroscopy to Investigate Nonlinear Processes and Dynamics in Electronically Excited Molecules on the Femtosecond Time Scale

77   0   0.0 ( 0 )
 نشر من قبل Daniel Slaughter
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a novel experimental technique to investigate ultrafast dynamics in photoexcited molecules by probing the third-order nonlinear optical susceptibility. A non-colinear 3-pulse scheme is developed to probe the ultrafast dynamics of excited electronic states using the optical Kerr effect by time-resolved polarization spectroscopy. Optical heterodyne and optical homodyne detection are demonstrated to measure the third-order nonlinear optical response for the S1 excited state of liquid nitrobenzene, which is populated by 2-photon absorption of a 780 nm 35 fs excitation pulse.

قيم البحث

اقرأ أيضاً

We investigate ultrafast dynamics of the lowest singlet excited electronic state in liquid nitrobenzene using Ultrafast Transient Polarization Spectroscopy (UTPS), extending the well-known technique of Optical-Kerr Effect (OKE) spectroscopy to excite d electronic states. The third-order non-linear response of the excited molecular ensemble is highly sensitive to details of excited state character and geometries and is measured using two femtosecond pulses following a third femtosecond pulse that populates the S1 excited state. By measuring this response as a function of time delays between the three pulses involved, we extract the dephasing time of the wave-packet on the excited state. The dephasing time measured as a function of time-delay after pump excitation shows oscillations indicating oscillatory wave-packet dynamics on the excited state. From the experimental measurements and supporting theoretical calculations, we deduce that the wave-packet completely leaves the S1 state surface after three traversals of the inter-system crossing between the singlet S1 and triplet T2 states.
This review article discusses advances in the use of time-resolved photoelectron spectroscopy for the study of non-adiabatic processes in molecules. A theoretical treatment of the experiments is presented together with a number of experimental examples.
The electronic and nuclear dynamics in methanol, following 156~nm photoexcitation, are investigated by combining a detailed analysis of time-resolved photoelectron spectroscopy experiments with electronic structure calculations. The photoexcitation p ump pulse is followed by a delayed 260~nm photoionization probe pulse, to produce photoelectrons that are analyzed by velocity map imaging. The yield of mass-resolved ions, measured with similar experimental conditions, are found to exhibit the same time-dependence as specific photoelectron spectral features. Energy-resolved signal onset and decay times are extracted from the measured photoelectron spectra to achieve high temporal resolution, beyond the 20~fs pump and probe pulse durations. When combined with {it ab initio} calculations of selected cuts through the excited state potential energy surfaces, this information allows the dynamics of the transient excited molecule, which exhibits multiple nuclear and electronic degrees of freedom, to be tracked on its intrinsic few-femtosecond timescale. Within 15~fs of photoexcitation, we observe nuclear motion on the initially bound photoexcited 2$^{1}$A$$ (S$_2$) electronic state, through a conical intersection with the 1$^{1}$A$$ (S$_3$) state, which reveals paths to photodissociation following C--O stretch and C--O--H angle opening.
The possibility of suddenly ionized molecules undergoing extremely fast electron hole dynamics prior to significant structural change was first recognized more than 20 years ago and termed charge migration. The accurate probing of ultrafast electron hole dynamics requires measurements that have both sufficient temporal resolution and can detect the localization of a specific hole within the molecule. We report an investigation of the dynamics of inner valence hole states in isopropanol where we use an x-ray pump/x-ray probe experiment, with site and state-specific probing of a transient hole state localized near the oxygen atom in the molecule, together with an ab initio theoretical treatment. We record the signature of transient hole dynamics and make the first observation of dynamics driven by frustrated Auger-Meitner transitions. We verify that the hole lifetime is consistent with our theoretical prediction. This state-specific measurement paves the way to widespread application for observations of transient hole dynamics localized in space and time in molecules and thus to charge transfer phenomena that are fundamental in chemical and material physics.
The Pixel-Imaging Mass Spectrometry (PImMS) camera allows for 3D charged particle imaging measurements, in which the particle time-of-flight is recorded along with $(x,y)$ position. Coupling the PImMS camera to an ultrafast pump-probe velocity-map im aging spectroscopy apparatus therefore provides a route to time-resolved multi-mass ion imaging, with both high count rates and large dynamic range, thus allowing for rapid measurements of complex photofragmentation dynamics. Furthermore, the use of vacuum ultraviolet wavelengths for the probe pulse allows for an enhanced observation window for the study of excited state molecular dynamics in small polyatomic molecules having relatively high ionization potentials. Herein, preliminary time-resolved multi-mass imaging results from C$_2$F$_3$I photolysis are presented. The experiments utilized femtosecond UV and VUV (160.8~nm and 267~nm) pump and probe laser pulses in order to demonstrate and explore this new time-resolved experimental ion imaging configuration. The data indicates the depth and power of this measurement modality, with a range of photofragments readily observed, and many indications of complex underlying wavepacket dynamics on the excited state(s) prepared.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا