ﻻ يوجد ملخص باللغة العربية
Motility-induced phase separation is a purely non-equilibrium phenomenon in which self-propelled particles aggregate without any attractive interactions. One surprising feature of MIPS is the emergence of polar-nematic order at the interfacial region, whose underlying physics remains poorly understood. Here, I will show analytically and numerically that the many-body physics leading to the interfacial ordering behavior can be captured by an effective speed model. In this model, each particles speed depends on the systems density a short distance ahead of its direction of motion.
A collection of self-propelled particles with volume exclusion interactions can exhibit the phenomenology of gas-liquid phase separation, known as motility-induced phase separation (MIPS). The non-equilibrium nature of the system is fundamental to th
Minimal models of self-propelled particles with short-range volume exclusion interactions have been shown to exhibit signatures of phase separation. Here I show that the observed interfacial stability and fluctuations in motility-induced phase separa
Using computer simulations and dynamic mean-field theory, we demonstrate that fast enough rotation of circle active Brownian particles in two dimensions generates a dynamical clustering state interrupting the conventional motility induced phase separ
Using a microscopic model of interacting polar biofilaments and motor proteins, we characterize the phase diagram of both homogeneous and inhomogeneous states in terms of experimental parameters. The polarity of motor clusters is key in determining t
Self-propelled particle (SPP) systems are intrinsically out of equilibrium systems, where each individual particle converts energy into work to move in a dissipative medium. When interacting through a velocity alignment mechanism, and the medium acts