ترغب بنشر مسار تعليمي؟ اضغط هنا

Motility-induced phase separation of active particles in the presence of velocity alignment

86   0   0.0 ( 0 )
 نشر من قبل Fernando Peruani
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Self-propelled particle (SPP) systems are intrinsically out of equilibrium systems, where each individual particle converts energy into work to move in a dissipative medium. When interacting through a velocity alignment mechanism, and the medium acts as a momentum sink, even momentum is not conserved. In this scenario, a mapping into an equilibrium system seems unlikely. Here, we show that an entropy functional can be derived for SPPs with velocity alignment and density-dependent speed, at least in the (orientationally) disordered phase. This non-trivial result has important physical consequences. The study of the entropy functional reveals that the system can undergo phase separation before the orientational-order phase transition known to occur in SPP systems with velocity alignment.Moreover, we indicate that the spinodal line is a function of the alignment sensitivity and show that density fluctuations as well as the critical spatial diffusion, that leads to phase separation, dramatically increase as the orientational-order transition is approached.

قيم البحث

اقرأ أيضاً

207 - Zhan Ma , Ran Ni 2021
Using computer simulations and dynamic mean-field theory, we demonstrate that fast enough rotation of circle active Brownian particles in two dimensions generates a dynamical clustering state interrupting the conventional motility induced phase separ ation (MIPS). Multiple clusters arise from the combination of the conventional MIPS cohesion, and the circulating current caused disintegration. The non-vanishing current in non-equilibrium steady states microscopically originates from the motility ``relieved by automatic rotation, which breaks the detailed balance at the continuum level. This mechanism sheds light on the understanding of dynamic clusters formation observed in a variety of active matter systems, and may help examine the generalization of effective thermodynamic concepts developed in the context of MIPS.
200 - M. E. Cates , J. Tailleur 2012
Active Brownian particles (ABPs, such as self-phoretic colloids) swim at fixed speed $v$ along a body-axis ${bf u}$ that rotates by slow angular diffusion. Run-and-tumble particles (RTPs, such as motile bacteria) swim with constant $u$ until a random tumble event suddenly decorrelates the orientation. We show that when the motility parameters depend on density $rho$ but not on ${bf u}$, the coarse-grained fluctuating hydrodynamics of interacting ABPs and RTPs can be mapped onto each other and are thus strictly equivalent. In both cases, a steeply enough decreasing $v(rho)$ causes phase separation in dimensions $d=2,3$, even when no attractive forces act between the particles. This points to a generic role for motility-induced phase separation in active matter. However, we show that the ABP/RTP equivalence does not automatically extend to the more general case of $u$-dependent motilities.
As a result of nonequilibrium forces, purely repulsive self-propelled particles undergo macrophase separation between a dense and a dilute phase. We present a thorough study of the ordering kinetics of such motility-induced phase separation (MIPS) in active Brownian particles in two dimensions, and we show that it is generically accompanied by microphase separation. The growth of the dense phase follows a law akin to the one of liquid-gas phase separation. However, it is made of a mosaic of hexatic microdomains whose size does not coarsen indefinitely, leaving behind a network of extended topological defects from which microscopic dilute bubbles arise. The characteristic length of these finite-size structures increases with activity, independently of the choice of initial conditions.
We develop a dynamic mean-field theory for polar active particles that interact through a self-generated field, in particular one generated through emitting a chemical signal. While being a form of chemotactic response, it is different from conventio nal chemotaxis in that particles discontinuously change their motility when the local concentration surpasses a threshold. The resulting coupled equations for density and polarization are linear and can be solved analytically for simple geometries, yielding inhomogeneous density profiles. Specifically, here we consider a planar and circular interface. Our theory thus explains the observed coexistence of dense aggregates with an active gas. There are, however, differences to the more conventional picture of liquid-gas coexistence based on a free energy, most notably the absence of a critical point. We corroborate our analytical predictions by numerical simulations of active particles under confinement and interacting through volume exclusion. Excellent quantitative agreement is reached through an effective translational diffusion coefficient. We finally show that an additional response to the chemical gradient direction is sufficient to induce vortex clusters. Our results pave the way to engineer motility responses in order to achieve aggregation and collective behavior even at unfavorable conditions.
We establish the complete phase diagram of self-propelled hard disks in two spatial dimensions from the analysis of the equation of state and the statistics of local order parameters. The equilibrium melting scenario is maintained at small activities , with coexistence between active liquid and hexatic order, followed by a proper hexatic phase and a further transition to an active solid. As activity increases, the emergence of hexatic and solid order is shifted towards higher densities. Above a critical activity and for a certain range of packing fractions, the system undergoes MIPS and demixes into low and high density phases; the latter can be either disordered (liquid) or ordered (hexatic or solid) depending on activity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا