ﻻ يوجد ملخص باللغة العربية
To alleviate the burden of labeling, unsupervised domain adaptation (UDA) aims to transfer knowledge in previous related labeled datasets (source) to a new unlabeled dataset (target). Despite impressive progress, prior methods always need to access the raw source data and develop data-dependent alignment approaches to recognize the target samples in a transductive learning manner, which may raise privacy concerns from source individuals. Several recent studies resort to an alternative solution by exploiting the well-trained white-box model instead of the raw data from the source domain, however, it may leak the raw data through generative adversarial training. This paper studies a practical and interesting setting for UDA, where only a black-box source model (i.e., only network predictions are available) is provided during adaptation in the target domain. Besides, different neural networks are even allowed to be employed for different domains. For this new problem, we propose a novel two-step adaptation framework called Distill and Fine-tune (Dis-tune). Specifically, Dis-tune first structurally distills the knowledge from the source model to a customized target model, then unsupervisedly fine-tunes the distilled model to fit the target domain. To verify the effectiveness, we consider two UDA scenarios (ie, closed-set and partial-set), and discover that Dis-tune achieves highly competitive performance to state-of-the-art approaches.
Black-box risk scoring models permeate our lives, yet are typically proprietary or opaque. We propose Distill-and-Compare, a model distillation and comparison approach to audit such models. To gain insight into black-box models, we treat them as teac
We study the task of replicating the functionality of black-box neural models, for which we only know the output class probabilities provided for a set of input images. We assume back-propagation through the black-box model is not possible and its tr
Many optimization methods for generating black-box adversarial examples have been proposed, but the aspect of initializing said optimizers has not been considered in much detail. We show that the choice of starting points is indeed crucial, and that
Model compression becomes a recent trend due to the requirement of deploying neural networks on embedded and mobile devices. Hence, both accuracy and efficiency are of critical importance. To explore a balance between them, a knowledge distillation s
We introduce the problem of adapting a black-box, cloud-based ASR system to speech from a target accent. While leading online ASR services obtain impressive performance on main-stream accents, they perform poorly on sub-populations - we observed that