ترغب بنشر مسار تعليمي؟ اضغط هنا

Performance analysis of facial recognition: A critical review through glass factor

248   0   0.0 ( 0 )
 نشر من قبل Jiashu He
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Jiashu He




اسأل ChatGPT حول البحث

COVID-19 pandemic and social distancing urge a reliable human face recognition system in different abnormal situations. However, there is no research which studies the influence of glass factor in facial recognition system. This paper provides a comprehensive review of glass factor. The study contains two steps: data collection and accuracy test. Data collection includes collecting human face images through different situations, such as clear glasses, glass with water and glass with mist. Based on the collected data, an existing state-of-the-art face detection and recognition system built upon MTCNN and Inception V1 deep nets is tested for further analysis. Experimental data supports that 1) the system is robust for classification when comparing real-time images and 2) it fails at determining if two images are of same person by comparing real-time disturbed image with the frontal ones.



قيم البحث

اقرأ أيضاً

In the recent years, there has been a shift in facial behavior analysis from the laboratory-controlled conditions to the challenging in-the-wild conditions due to the superior performance of deep learning based approaches for many real world applicat ions.However, the performance of deep learning approaches relies on the amount of training data. One of the major problems with data acquisition is the requirement of annotations for large amount of training data. Labeling process of huge training data demands lot of human support with strong domain expertise for facial expressions or action units, which is difficult to obtain in real-time environments.Moreover, labeling process is highly vulnerable to ambiguity of expressions or action units, especially for intensities due to the bias induced by the domain experts. Therefore, there is an imperative need to address the problem of facial behavior analysis with weak annotations. In this paper, we provide a comprehensive review of weakly supervised learning (WSL) approaches for facial behavior analysis with both categorical as well as dimensional labels along with the challenges and potential research directions associated with it. First, we introduce various types of weak annotations in the context of facial behavior analysis and the corresponding challenges associated with it. We then systematically review the existing state-of-the-art approaches and provide a taxonomy of these approaches along with their insights and limitations. In addition, widely used data-sets in the reviewed literature and the performance of these approaches along with evaluation principles are summarized. Finally, we discuss the remaining challenges and opportunities along with the potential research directions in order to apply facial behavior analysis with weak labels in real life situations.
Facial affect analysis (FAA) using visual signals is important in human-computer interaction. Early methods focus on extracting appearance and geometry features associated with human affects, while ignoring the latent semantic information among indiv idual facial changes, leading to limited performance and generalization. Recent work attempts to establish a graph-based representation to model these semantic relationships and develop frameworks to leverage them for various FAA tasks. In this paper, we provide a comprehensive review of graph-based FAA, including the evolution of algorithms and their applications. First, the FAA background knowledge is introduced, especially on the role of the graph. We then discuss approaches that are widely used for graph-based affective representation in literature and show a trend towards graph construction. For the relational reasoning in graph-based FAA, existing studies are categorized according to their usage of traditional methods or deep models, with a special emphasis on the latest graph neural networks. Performance comparisons of the state-of-the-art graph-based FAA methods are also summarized. Finally, we discuss the challenges and potential directions. As far as we know, this is the first survey of graph-based FAA methods. Our findings can serve as a reference for future research in this field.
Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face commo n challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.
We survey over 100 face datasets constructed between 1976 to 2019 of 145 million images of over 17 million subjects from a range of sources, demographics and conditions. Our historical survey reveals that these datasets are contextually informed, sha ped by changes in political motivations, technological capability and current norms. We discuss how such influences mask specific practices (some of which may actually be harmful or otherwise problematic) and make a case for the explicit communication of such details in order to establish a more grounded understanding of the technologys function in the real world.
Achieving high performance for facial age estimation with subjects in the borderline between adulthood and non-adulthood has always been a challenge. Several studies have used different approaches from the age of a baby to an elder adult and differen t datasets have been employed to measure the mean absolute error (MAE) ranging between 1.47 to 8 years. The weakness of the algorithms specifically in the borderline has been a motivation for this paper. In our approach, we have developed an ensemble technique that improves the accuracy of underage estimation in conjunction with our deep learning model (DS13K) that has been fine-tuned on the Deep Expectation (DEX) model. We have achieved an accuracy of 68% for the age group 16 to 17 years old, which is 4 times better than the DEX accuracy for such age range. We also present an evaluation of existing cloud-based and offline facial age prediction services, such as Amazon Rekognition, Microsoft Azure Cognitive Services, How-Old.net and DEX.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا