ترغب بنشر مسار تعليمي؟ اضغط هنا

Language-based Video Editing via Multi-Modal Multi-Level Transformer

104   0   0.0 ( 0 )
 نشر من قبل Tsu-Jui Fu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Video editing tools are widely used nowadays for digital design. Although the demand for these tools is high, the prior knowledge required makes it difficult for novices to get started. Systems that could follow natural language instructions to perform automatic editing would significantly improve accessibility. This paper introduces the language-based video editing (LBVE) task, which allows the model to edit, guided by text instruction, a source video into a target video. LBVE contains two features: 1) the scenario of the source video is preserved instead of generating a completely different video; 2) the semantic is presented differently in the target video, and all changes are controlled by the given instruction. We propose a Multi-Modal Multi-Level Transformer (M$^3$L-Transformer) to carry out LBVE. The M$^3$L-Transformer dynamically learns the correspondence between video perception and language semantic at different levels, which benefits both the video understanding and video frame synthesis. We build three new datasets for evaluation, including two diagnostic and one from natural videos with human-labeled text. Extensive experimental results show that M$^3$L-Transformer is effective for video editing and that LBVE can lead to a new field toward vision-and-language research.



قيم البحث

اقرأ أيضاً

Video grounding aims to localize the temporal segment corresponding to a sentence query from an untrimmed video. Almost all existing video grounding methods fall into two frameworks: 1) Top-down model: It predefines a set of segment candidates and th en conducts segment classification and regression. 2) Bottom-up model: It directly predicts frame-wise probabilities of the referential segment boundaries. However, all these methods are not end-to-end, ie, they always rely on some time-consuming post-processing steps to refine predictions. To this end, we reformulate video grounding as a set prediction task and propose a novel end-to-end multi-modal Transformer model, dubbed as textbf{GTR}. Specifically, GTR has two encoders for video and language encoding, and a cross-modal decoder for grounding prediction. To facilitate the end-to-end training, we use a Cubic Embedding layer to transform the raw videos into a set of visual tokens. To better fuse these two modalities in the decoder, we design a new Multi-head Cross-Modal Attention. The whole GTR is optimized via a Many-to-One matching loss. Furthermore, we conduct comprehensive studies to investigate different model design choices. Extensive results on three benchmarks have validated the superiority of GTR. All three typical GTR variants achieve record-breaking performance on all datasets and metrics, with several times faster inference speed.
Traditional video summarization methods generate fixed video representations regardless of user interest. Therefore such methods limit users expectations in content search and exploration scenarios. Multi-modal video summarization is one of the metho ds utilized to address this problem. When multi-modal video summarization is used to help video exploration, a text-based query is considered as one of the main drivers of video summary generation, as it is user-defined. Thus, encoding the text-based query and the video effectively are both important for the task of multi-modal video summarization. In this work, a new method is proposed that uses a specialized attention network and contextualized word representations to tackle this task. The proposed model consists of a contextualized video summary controller, multi-modal attention mechanisms, an interactive attention network, and a video summary generator. Based on the evaluation of the existing multi-modal video summarization benchmark, experimental results show that the proposed model is effective with the increase of +5.88% in accuracy and +4.06% increase of F1-score, compared with the state-of-the-art method.
This paper proposes a method to gain extra supervision via multi-task learning for multi-modal video question answering. Multi-modal video question answering is an important task that aims at the joint understanding of vision and language. However, e stablishing large scale dataset for multi-modal video question answering is expensive and the existing benchmarks are relatively small to provide sufficient supervision. To overcome this challenge, this paper proposes a multi-task learning method which is composed of three main components: (1) multi-modal video question answering network that answers the question based on the both video and subtitle feature, (2) temporal retrieval network that predicts the time in the video clip where the question was generated from and (3) modality alignment network that solves metric learning problem to find correct association of video and subtitle modalities. By simultaneously solving related auxiliary tasks with hierarchically shared intermediate layers, the extra synergistic supervisions are provided. Motivated by curriculum learning, multi task ratio scheduling is proposed to learn easier task earlier to set inductive bias at the beginning of the training. The experiments on publicly available dataset TVQA shows state-of-the-art results, and ablation studies are conducted to prove the statistical validity.
Sign language is commonly used by deaf or speech impaired people to communicate but requires significant effort to master. Sign Language Recognition (SLR) aims to bridge the gap between sign language users and others by recognizing signs from given v ideos. It is an essential yet challenging task since sign language is performed with the fast and complex movement of hand gestures, body posture, and even facial expressions. Recently, skeleton-based action recognition attracts increasing attention due to the independence between the subject and background variation. However, skeleton-based SLR is still under exploration due to the lack of annotations on hand keypoints. Some efforts have been made to use hand detectors with pose estimators to extract hand key points and learn to recognize sign language via Neural Networks, but none of them outperforms RGB-based methods. To this end, we propose a novel Skeleton Aware Multi-modal SLR framework (SAM-SLR) to take advantage of multi-modal information towards a higher recognition rate. Specifically, we propose a Sign Language Graph Convolution Network (SL-GCN) to model the embedded dynamics and a novel Separable Spatial-Temporal Convolution Network (SSTCN) to exploit skeleton features. RGB and depth modalities are also incorporated and assembled into our framework to provide global information that is complementary to the skeleton-based methods SL-GCN and SSTCN. As a result, SAM-SLR achieves the highest performance in both RGB (98.42%) and RGB-D (98.53%) tracks in 2021 Looking at People Large Scale Signer Independent Isolated SLR Challenge. Our code is available at https://github.com/jackyjsy/CVPR21Chal-SLR
Zero-Shot Learning (ZSL) has rapidly advanced in recent years. Towards overcoming the annotation bottleneck in the Sign Language Recognition (SLR), we explore the idea of Zero-Shot Sign Language Recognition (ZS-SLR) with no annotated visual examples, by leveraging their textual descriptions. In this way, we propose a multi-modal Zero-Shot Sign Language Recognition (ZS-SLR) model harnessing from the complementary capabilities of deep features fused with the skeleton-based ones. A Transformer-based model along with a C3D model is used for hand detection and deep features extraction, respectively. To make a trade-off between the dimensionality of the skeletonbased and deep features, we use an Auto-Encoder (AE) on top of the Long Short Term Memory (LSTM) network. Finally, a semantic space is used to map the visual features to the lingual embedding of the class labels, achieved via the Bidirectional Encoder Representations from Transformers (BERT) model. Results on four large-scale datasets, RKS-PERSIANSIGN, First-Person, ASLVID, and isoGD, show the superiority of the proposed model compared to state-of-the-art alternatives in ZS-SLR.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا