ﻻ يوجد ملخص باللغة العربية
Instance segmentation models today are very accurate when trained on large annotated datasets, but collecting mask annotations at scale is prohibitively expensive. We address the partially supervised instance segmentation problem in which one can train on (significantly cheaper) bounding boxes for all categories but use masks only for a subset of categories. In this work, we focus on a popular family of models which apply differentiable cropping to a feature map and predict a mask based on the resulting crop. Under this family, we study Mask R-CNN and discover that instead of its default strategy of training the mask-head with a combination of proposals and groundtruth boxes, training the mask-head with only groundtruth boxes dramatically improves its performance on novel classes. This training strategy also allows us to take advantage of alternative mask-head architectures, which we exploit by replacing the typical mask-head of 2-4 layers with significantly deeper off-the-shelf architectures (e.g. ResNet, Hourglass models). While many of these architectures perform similarly when trained in fully supervised mode, our main finding is that they can generalize to novel classes in dramatically different ways. We call this ability of mask-heads to generalize to unseen classes the strong mask generalization effect and show that without any specialty modules or losses, we can achieve state-of-the-art results in the partially supervised COCO instance segmentation benchmark. Finally, we demonstrate that our effect is general, holding across underlying detection methodologies (including anchor-based, anchor-free or no detector at all) and across different backbone networks. Code and pre-trained models are available at https://git.io/deepmac.
Binary grid mask representation is broadly used in instance segmentation. A representative instantiation is Mask R-CNN which predicts masks on a $28times 28$ binary grid. Generally, a low-resolution grid is not sufficient to capture the details, whil
OAR segmentation is a critical step in radiotherapy of head and neck (H&N) cancer, where inconsistencies across radiation oncologists and prohibitive labor costs motivate automated approaches. However, leading methods using standard fully convolution
Detection and segmentation of the hippocampal structures in volumetric brain images is a challenging problem in the area of medical imaging. In this paper, we propose a two-stage 3D fully convolutional neural network that efficiently detects and segm
Instance segmentation is a promising yet challenging topic in computer vision. Recent approaches such as Mask R-CNN typically divide this problem into two parts -- a detection component and a mask generation branch, and mostly focus on the improvemen
Committee-based models, i.e., model ensembles or cascades, are underexplored in recent work on developing efficient models. While committee-based models themselves are not new, there lacks a systematic understanding of their efficiency in comparison