ﻻ يوجد ملخص باللغة العربية
A new unsupervised learning method of depth and ego-motion using multiple masks from monocular video is proposed in this paper. The depth estimation network and the ego-motion estimation network are trained according to the constraints of depth and ego-motion without truth values. The main contribution of our method is to carefully consider the occlusion of the pixels generated when the adjacent frames are projected to each other, and the blank problem generated in the projection target imaging plane. Two fine masks are designed to solve most of the image pixel mismatch caused by the movement of the camera. In addition, some relatively rare circumstances are considered, and repeated masking is proposed. To some extent, the method is to use a geometric relationship to filter the mismatched pixels for training, making unsupervised learning more efficient and accurate. The experiments on KITTI dataset show our method achieves good performance in terms of depth and ego-motion. The generalization capability of our method is demonstrated by training on the low-quality uncalibrated bike video dataset and evaluating on KITTI dataset, and the results are still good.
Most of the deep-learning based depth and ego-motion networks have been designed for visible cameras. However, visible cameras heavily rely on the presence of an external light source. Therefore, it is challenging to use them under low-light conditio
Unsupervised learning of depth and ego-motion from unlabelled monocular videos has recently drawn great attention, which avoids the use of expensive ground truth in the supervised one. It achieves this by using the photometric errors between the targ
Recent work has shown that CNN-based depth and ego-motion estimators can be learned using unlabelled monocular videos. However, the performance is limited by unidentified moving objects that violate the underlying static scene assumption in geometric
We propose a semantics-driven unsupervised learning approach for monocular depth and ego-motion estimation from videos in this paper. Recent unsupervised learning methods employ photometric errors between synthetic view and actual image as a supervis
Estimating geometric elements such as depth, camera motion, and optical flow from images is an important part of the robots visual perception. We use a joint self-supervised method to estimate the three geometric elements. Depth network, optical flow