ﻻ يوجد ملخص باللغة العربية
Unsupervised learning of depth and ego-motion from unlabelled monocular videos has recently drawn great attention, which avoids the use of expensive ground truth in the supervised one. It achieves this by using the photometric errors between the target view and the synthesized views from its adjacent source views as the loss. Despite significant progress, the learning still suffers from occlusion and scene dynamics. This paper shows that carefully manipulating photometric errors can tackle these difficulties better. The primary improvement is achieved by a statistical technique that can mask out the invisible or nonstationary pixels in the photometric error map and thus prevents misleading the networks. With this outlier masking approach, the depth of objects moving in the opposite direction to the camera can be estimated more accurately. To the best of our knowledge, such scenarios have not been seriously considered in the previous works, even though they pose a higher risk in applications like autonomous driving. We also propose an efficient weighted multi-scale scheme to reduce the artifacts in the predicted depth maps. Extensive experiments on the KITTI dataset show the effectiveness of the proposed approaches. The overall system achieves state-of-theart performance on both depth and ego-motion estimation.
A new unsupervised learning method of depth and ego-motion using multiple masks from monocular video is proposed in this paper. The depth estimation network and the ego-motion estimation network are trained according to the constraints of depth and e
Recent work has shown that CNN-based depth and ego-motion estimators can be learned using unlabelled monocular videos. However, the performance is limited by unidentified moving objects that violate the underlying static scene assumption in geometric
We propose a semantics-driven unsupervised learning approach for monocular depth and ego-motion estimation from videos in this paper. Recent unsupervised learning methods employ photometric errors between synthetic view and actual image as a supervis
Most of the deep-learning based depth and ego-motion networks have been designed for visible cameras. However, visible cameras heavily rely on the presence of an external light source. Therefore, it is challenging to use them under low-light conditio
For ego-motion estimation, the feature representation of the scenes is crucial. Previous methods indicate that both the low-level and semantic feature-based methods can achieve promising results. Therefore, the incorporation of hierarchical feature r