ﻻ يوجد ملخص باللغة العربية
We propose a time-delay oscillator with Mackey-Glass nonlinearity based on a pinned magnetic domain wall in a thin film nanostrip. Through spin transfer torques, electric currents applied along the strip cause the domain wall to deform and displace away from a geometrical pinning site, which can be converted into a nonlinear transfer function through a suitable choice of a readout. This readout serves as a delay signal, which is subsequently fed back into the applied current with amplification. With micromagnetics simulations, we study the role of the readout position, time delay, and feedback gain on the dynamics of this domain wall. In particular, we highlight regimes in which self-sustained oscillations and complex transients are possible.
It is well established that the spin-orbit interaction in heavy metal/ferromagnet heterostructures leads to a significant interfacial Dzyaloshinskii-Moriya Interaction (DMI) that modifies the internal structure of magnetic domain walls (DWs) to favor
The scalability of quantum networks based on solid-state spin qubits is hampered by the short range of natural spin-spin interactions. Here, we propose a scheme to entangle distant spin qubits via the soft modes of an antiferromagnetic domain wall (D
We study the formation and control of metastable states of pairs of domain walls in cylindrical nanowires of small diameter where the transverse walls are the lower energy state. We show that these pairs form bound states under certain conditions, wi
Comprehensive control of the domain wall nucleation process is crucial for spin-based emerging technologies ranging from random-access and storage-class memories over domain-wall logic concepts to nanomagnetic logic. In this work, focused Ga+ ion-irr
Controllable artificial pinning is indispensable in numerous domain-wall (DW) devices, such as memory, sensor, logic gate, and neuromorphic computing hardware. The high-accuracy determination of the effective spring constant of the pinning potential,