ﻻ يوجد ملخص باللغة العربية
Road-boundary detection is important for autonomous driving. It can be used to constrain autonomous vehicles running on road areas to ensure driving safety. Compared with online road-boundary detection using on-vehicle cameras/Lidars, offline detection using aerial images could alleviate the severe occlusion issue. Moreover, the offline detection results can be directly employed to annotate high-definition (HD) maps. In recent years, deep-learning technologies have been used in offline detection. But there still lacks a publicly available dataset for this task, which hinders the research progress in this area. So in this paper, we propose a new benchmark dataset, named textit{Topo-boundary}, for offline topological road-boundary detection. The dataset contains 25,295 $1000times1000$-sized 4-channel aerial images. Each image is provided with 8 training labels for different sub-tasks. We also design a new entropy-based metric for connectivity evaluation, which could better handle noises or outliers. We implement and evaluate 3 segmentation-based baselines and 5 graph-based baselines using the dataset. We also propose a new imitation-learning-based baseline which is enhanced from our previous work. The superiority of our enhancement is demonstrated from the comparison. The dataset and our-implemented code for the baselines are available at texttt{url{https://tonyxuqaq.github.io/Topo-boundary/}}.
Detection of road curbs is an essential capability for autonomous driving. It can be used for autonomous vehicles to determine drivable areas on roads. Usually, road curbs are detected on-line using vehicle-mounted sensors, such as video cameras and
Road curb detection is important for autonomous driving. It can be used to determine road boundaries to constrain vehicles on roads, so that potential accidents could be avoided. Most of the current methods detect road curbs online using vehicle-moun
With the increasing global popularity of self-driving cars, there is an immediate need for challenging real-world datasets for benchmarking and training various computer vision tasks such as 3D object detection. Existing datasets either represent sim
Road extraction is an essential step in building autonomous navigation systems. Detecting road segments is challenging as they are of varying widths, bifurcated throughout the image, and are often occluded by terrain, cloud, or other weather conditio
This paper presents a novel task together with a new benchmark for detecting generic, taxonomy-free event boundaries that segment a whole video into chunks. Conventional work in temporal video segmentation and action detection focuses on localizing p