ﻻ يوجد ملخص باللغة العربية
Modulation of the grain boundary properties in thermoelectric materials that have thermally activated electrical conductivity is crucial in order to achieve high performance at low temperatures. In this work, we show directly that the modulation of the potential barrier at the grain boundaries in perovskite SrTiO3 changes the low-temperature dependency of the bulk materials electrical conductivity. By sintering samples in a reducing environment of increasing strength, we produced La0.08Sr0.9TiO3 (LSTO) ceramics that gradually change their electrical conductivity behavior from thermally activated to single-crystal-like, with only minor variations in the Seebeck coefficient. Imaging of the surface potential by Kelvin probe force microscopy found lower potential barriers at the grain boundaries in the LSTO samples that had been processed in the more reducing environments. A theoretical model using the band offset at the grain boundary to represent the potential barrier agreed well with the measured grain boundary potential dependency of conductivity. The present work showed an order of magnitude enhancement in electrical conductivity (from 85 to 1287 S cm-1) and power factor (from 143 to 1745 {mu}W m-1 K-2) at 330 K by this modulation of charge transport at grain boundaries. This significant reduction in the impact of grain boundaries on charge transport in SrTiO3 provides an opportunity to achieve the ultimate phonon glass electron crystal by appropriate experimental design and processing.
A d-orbital electron has an anisotropic electron orbital and is a source of magnetism. The realization of a 2-dimensional electron gas (2DEG) embedded at a LaAlO3/SrTiO3 interface surprised researchers in materials and physical sciences because the 2
Two-dimensional electron gas (2DEG) formed at the interface between SrTiO3 (STO) and LaAlO3 (LAO) insulating layer is supposed to possess strong Rashba spin-orbit coupling. To date, the inverse Edelstein effect (i.e. spin-to-charge conversion) in the
We describe measurements of 100 nK temperature oscillations at room temperature, driven at the complex interface between p-doped Germanium, a nm size metal layer, and an electrolyte. We show that heat is deposited at this interface by thermoelectric
Devices made from graphene encapsulated in hexagonal boron-nitride exhibit pronounced negative bend resistance and an anomalous Hall effect, which are a direct consequence of room-temperature ballistic transport on a micrometer scale for a wide range
Flexoelectricity is a type of ubiquitous and prominent electromechanical coupling, pertaining to the response of electrical polarization to mechanical strain gradients while not restricted to the symmetry of materials. However, large elastic deformat