ﻻ يوجد ملخص باللغة العربية
We describe measurements of 100 nK temperature oscillations at room temperature, driven at the complex interface between p-doped Germanium, a nm size metal layer, and an electrolyte. We show that heat is deposited at this interface by thermoelectric effects, however the precise microscopic mechanism remains to be established. The temperature measurement is accomplished by observing the modulation of black body radiation from the interface. We argue that this geometry offers a method to study molecular scale dissipation phenomena. The Debye layer on the electrolyte side of the interface controls much of the dynamics. Interpreting the measurements from first principles, we show that in this geometry the Debye layer behaves like a low frequency transmission line.
A d-orbital electron has an anisotropic electron orbital and is a source of magnetism. The realization of a 2-dimensional electron gas (2DEG) embedded at a LaAlO3/SrTiO3 interface surprised researchers in materials and physical sciences because the 2
Non-local carrier injection/detection schemes lie at the very foundation of information manipulation in integrated systems. This paradigm consists in controlling with an external signal the channel where charge carriers flow between a source and a we
Two-dimensional electron gas (2DEG) formed at the interface between SrTiO3 (STO) and LaAlO3 (LAO) insulating layer is supposed to possess strong Rashba spin-orbit coupling. To date, the inverse Edelstein effect (i.e. spin-to-charge conversion) in the
Modulation of the grain boundary properties in thermoelectric materials that have thermally activated electrical conductivity is crucial in order to achieve high performance at low temperatures. In this work, we show directly that the modulation of t
Polar metals, commonly defined by the coexistence of polar crystal structure and metallicity, are thought to be scarce because the long-range electrostatic fields favoring the polar structure are expected to be fully screened by the conduction electr