ﻻ يوجد ملخص باللغة العربية
A key problem in the field of quantum computing is understanding whether quantum machine learning (QML) models implemented on noisy intermediate-scale quantum (NISQ) machines can achieve quantum advantages. Recently, Huang et al. [Nat Commun 12, 2631] partially answered this question by the lens of quantum kernel learning. Namely, they exhibited that quantum kernels can learn specific datasets with lower generalization error over the optimal classical kernel methods. However, most of their results are established on the ideal setting and ignore the caveats of near-term quantum machines. To this end, a crucial open question is: does the power of quantum kernels still hold under the NISQ setting? In this study, we fill this knowledge gap by exploiting the power of quantum kernels when the quantum system noise and sample error are considered. Concretely, we first prove that the advantage of quantum kernels is vanished for large size of datasets, few number of measurements, and large system noise. With the aim of preserving the superiority of quantum kernels in the NISQ era, we further devise an effective method via indefinite kernel learning. Numerical simulations accord with our theoretical results. Our work provides theoretical guidance of exploring advanced quantum kernels to attain quantum advantages on NISQ devices.
We review the development of generative modeling techniques in machine learning for the purpose of reconstructing real, noisy, many-qubit quantum states. Motivated by its interpretability and utility, we discuss in detail the theory of the restricted
Noisy Intermediate-Scale Quantum (NISQ) technology will be available in the near future. Quantum computers with 50-100 qubits may be able to perform tasks which surpass the capabilities of todays classical digital computers, but noise in quantum gate
Quantum Computing has been evolving in the last years. Although nowadays quantum algorithms performance has shown superior to their classical counterparts, quantum decoherence and additional auxiliary qubits needed for error tolerance routines have b
Quantum computers are growing in size, and design decisions are being made now that attempt to squeeze more computation out of these machines. In this spirit, we design a method to boost the computational power of near-term quantum computers by adapt
Noisy Intermediate-Scale Quantum (NISQ) hardware has unavoidable noises, and crosstalk error is a significant error source. When multiple quantum operations are executed simultaneously, the quantum state can be corrupted due to the crosstalk between