ترغب بنشر مسار تعليمي؟ اضغط هنا

Three Ultraluminous X-ray Sources Hosted by Globular Clusters in NGC 1316

75   0   0.0 ( 0 )
 نشر من قبل Kristen Dage
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have identified three ultraluminous X-ray sources (ULXs) hosted by globular clusters (GCs) within NGC 1316s stellar system. These discoveries bring the total number of known ULXs in GCs up to 20. We find that the X-ray spectra of the three new sources do not deviate from the established pattern of spectral behaviour of the other known GC ULXs. The consistency of the X-ray spectral behaviour for these sources points to multiple paths of formation and evolution mechanisms for these rare and unique sources. Using the now larger sample of GC ULXs, we compare the optical properties of the entire known population of GC ULXs to other GCs across five galaxies and find that the properties of clusters that host ULXs are quite different from the typical clusters. Lastly, any trend of GC ULXs being preferentially hosted by metal-rich clusters is not strongly significant in this sample.



قيم البحث

اقرأ أيضاً

A number of ultraluminous X-ray sources (ULXs) are physically associated with extragalactic globular clusters (GCs). We undertake a systematic X-ray analysis of eight of the brightest of these sources. We fit the spectra of the GC ULXs to single powe r law and single disk models. We find that the data never require that any of the sources change between a disk and a power law across successive observations. The GC ULXs best fit by a single disk show a bimodal distribution: they either have temperatures well below 0.5 keV, or variable temperatures ranging above 0.5 keV up to 2~keV. The GC ULXs with low kT have significant changes in luminosity but show little or no change in kT. By contrast, the sources with higher kT either change in both kT and $L_X$ together, or show no significant change in either parameter. Notably, the X-ray characteristics may be related to the optical properties of these ULXs, with the two lowest kT sources showing optical emission lines.
We review observations of ultraluminous X-ray sources (ULXs). X-ray spectroscopic and timing studies of ULXs suggest a new accretion state distinct from those seen in Galactic stellar-mass black hole binaries. The detection of coherent pulsations ind icates the presence of neutron-star accretors in three ULXs and therefore apparently super-Eddington luminosities. Optical and X-ray line profiles of ULXs and the properties of associated radio and optical nebulae suggest that ULXs produce powerful outflows, also indicative of super-Eddington accretion. We discuss models of super-Eddington accretion and their relation to the observed behaviors of ULXs. We review the evidence for intermediate mass black holes in ULXs. We consider the implications of ULXs for super-Eddington accretion in active galactic nuclei, heating of the early universe, and the origin of the black hole binary recently detected via gravitational waves.
NGC 925 ULX-1 and ULX-2 are two ultraluminous X-ray sources in the galaxy NGC 925, at a distance of 8.5 Mpc. For the first time, we analyzed high quality, simultaneous XMM-Newton and NuSTAR data of both sources. Although at a first glance ULX-1 resem bles an intermediate mass black hole candidate (IMBH) because of its high X-ray luminosity ($(2$$-$$4)times10^{40}$ erg s$^{-1}$) and its spectral/temporal features, a closer inspection shows that its properties are more similar to those of a typical super-Eddington accreting stellar black hole and we classify it as a `broadened disc ultraluminous X-ray source. Based on the physical interpretation of this spectral state, we suggest that ULX-1 is seen at small inclination angles, possibly through the evacuated cone of a powerful wind originating in the accretion disc. The spectral classification of ULX-2 is less certain, but we disfavour an IMBH accreting at sub-Eddington rates as none of its spectral/temporal properties can be associated to either the soft or hard state of Galactic accreting black hole binaries.
The features and make up of the population of X-ray sources in Galactic star clusters reflect the properties of the underlying stellar environment. Cluster age, mass, stellar encounter rate, binary frequency, metallicity, and maybe other properties a s well, determine to what extent we can expect a contribution to the cluster X-ray emission from low-mass X-ray binaries, millisecond pulsars, cataclysmic variables, and magnetically active binaries. Sensitive X-ray observations with XMM-Newton and certainly Chandra have yielded new insights into the nature of individual sources and the effects of dynamical encounters. They have also provided a new perspective on the collective X-ray properties of clusters, in which the X-ray emissivities of globular clusters and old open clusters can be compared to each other and to those of other environments. I will review our current understanding of cluster X-ray sources, focusing on star clusters older than about 1 Gyr, illustrated with recent results.
The giant elliptical galaxy NGC 1316 is the brightest galaxy in the Fornax cluster, and displays a number of morphological features that might be interpreted as an intermediate age merger remanent ($sim$3 Gyr). Based on the idea that globular cluster s systems (GCS) constitute genuine tracers of the formation and evolution of their host galaxies, we conducted a spectroscopic study of approximately 40 globular clusters (GCs) candidates associated with this interesting galaxy. We determined ages, metallicities, and $alpha$-element abundances for each GC present in the sample, through the measurement of different Lick indices and their subsequent comparison with simple stellar populations models (SSPs).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا