ﻻ يوجد ملخص باللغة العربية
Data augmentation is a ubiquitous technique for improving image classification when labeled data is scarce. Constraining the model predictions to be invariant to diverse data augmentations effectively injects the desired representational invariances to the model (e.g., invariance to photometric variations), leading to improved accuracy. Compared to image data, the appearance variations in videos are far more complex due to the additional temporal dimension. Yet, data augmentation methods for videos remain under-explored. In this paper, we investigate various data augmentation strategies that capture different video invariances, including photometric, geometric, temporal, and actor/scene augmentations. When integrated with existing consistency-based semi-supervised learning frameworks, we show that our data augmentation strategy leads to promising performance on the Kinetics-100, UCF-101, and HMDB-51 datasets in the low-label regime. We also validate our data augmentation strategy in the fully supervised setting and demonstrate improved performance.
Contextual information plays an important role in action recognition. Local operations have difficulty to model the relation between two elements with a long-distance interval. However, directly modeling the contextual information between any two poi
Temporal modeling still remains challenging for action recognition in videos. To mitigate this issue, this paper presents a new video architecture, termed as Temporal Difference Network (TDN), with a focus on capturing multi-scale temporal informatio
Deep learning has achieved great success in recognizing video actions, but the collection and annotation of training data are still quite laborious, which mainly lies in two aspects: (1) the amount of required annotated data is large; (2) temporally
Temporal modelling is the key for efficient video action recognition. While understanding temporal information can improve recognition accuracy for dynamic actions, removing temporal redundancy and reusing past features can significantly save computa
The existing action recognition methods are mainly based on clip-level classifiers such as two-stream CNNs or 3D CNNs, which are trained from the randomly selected clips and applied to densely sampled clips during testing. However, this standard sett