ترغب بنشر مسار تعليمي؟ اضغط هنا

AdaFuse: Adaptive Temporal Fusion Network for Efficient Action Recognition

92   0   0.0 ( 0 )
 نشر من قبل Yue Meng
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Temporal modelling is the key for efficient video action recognition. While understanding temporal information can improve recognition accuracy for dynamic actions, removing temporal redundancy and reusing past features can significantly save computation leading to efficient action recognition. In this paper, we introduce an adaptive temporal fusion network, called AdaFuse, that dynamically fuses channels from current and past feature maps for strong temporal modelling. Specifically, the necessary information from the historical convolution feature maps is fused with current pruned feature maps with the goal of improving both recognition accuracy and efficiency. In addition, we use a skipping operation to further reduce the computation cost of action recognition. Extensive experiments on Something V1 & V2, Jester and Mini-Kinetics show that our approach can achieve about 40% computation savings with comparable accuracy to state-of-the-art methods. The project page can be found at https://mengyuest.github.io/AdaFuse/

قيم البحث

اقرأ أيضاً

118 - Limin Wang , Zhan Tong , Bin Ji 2020
Temporal modeling still remains challenging for action recognition in videos. To mitigate this issue, this paper presents a new video architecture, termed as Temporal Difference Network (TDN), with a focus on capturing multi-scale temporal informatio n for efficient action recognition. The core of our TDN is to devise an efficient temporal module (TDM) by explicitly leveraging a temporal difference operator, and systematically assess its effect on short-term and long-term motion modeling. To fully capture temporal information over the entire video, our TDN is established with a two-level difference modeling paradigm. Specifically, for local motion modeling, temporal difference over consecutive frames is used to supply 2D CNNs with finer motion pattern, while for global motion modeling, temporal difference across segments is incorporated to capture long-range structure for motion feature excitation. TDN provides a simple and principled temporal modeling framework and could be instantiated with the existing CNNs at a small extra computational cost. Our TDN presents a new state of the art on the Something-Something V1 & V2 datasets and is on par with the best performance on the Kinetics-400 dataset. In addition, we conduct in-depth ablation studies and plot the visualization results of our TDN, hopefully providing insightful analysis on temporal difference modeling. We release the code at https://github.com/MCG-NJU/TDN.
Efficiently modeling spatial-temporal information in videos is crucial for action recognition. To achieve this goal, state-of-the-art methods typically employ the convolution operator and the dense interaction modules such as non-local blocks. Howeve r, these methods cannot accurately fit the diverse events in videos. On the one hand, the adopted convolutions are with fixed scales, thus struggling with events of various scales. On the other hand, the dense interaction modeling paradigm only achieves sub-optimal performance as action-irrelevant parts bring additional noises for the final prediction. In this paper, we propose a unified action recognition framework to investigate the dynamic nature of video content by introducing the following designs. First, when extracting local cues, we generate the spatial-temporal kernels of dynamic-scale to adaptively fit the diverse events. Second, to accurately aggregate these cues into a global video representation, we propose to mine the interactions only among a few selected foreground objects by a Transformer, which yields a sparse paradigm. We call the proposed framework as Event Adaptive Network (EAN) because both key designs are adaptive to the input video content. To exploit the short-term motions within local segments, we propose a novel and efficient Latent Motion Code (LMC) module, further improving the performance of the framework. Extensive experiments on several large-scale video datasets, e.g., Something-to-Something V1&V2, Kinetics, and Diving48, verify that our models achieve state-of-the-art or competitive performances at low FLOPs. Codes are available at: https://github.com/tianyuan168326/EAN-Pytorch.
Action recognition is an open and challenging problem in computer vision. While current state-of-the-art models offer excellent recognition results, their computational expense limits their impact for many real-world applications. In this paper, we p ropose a novel approach, called AR-Net (Adaptive Resolution Network), that selects on-the-fly the optimal resolution for each frame conditioned on the input for efficient action recognition in long untrimmed videos. Specifically, given a video frame, a policy network is used to decide what input resolution should be used for processing by the action recognition model, with the goal of improving both accuracy and efficiency. We efficiently train the policy network jointly with the recognition model using standard back-propagation. Extensive experiments on several challenging action recognition benchmark datasets well demonstrate the efficacy of our proposed approach over state-of-the-art methods. The project page can be found at https://mengyuest.github.io/AR-Net
This paper studies how to introduce viewpoint-invariant feature representations that can help action recognition and detection. Although we have witnessed great progress of action recognition in the past decade, it remains challenging yet interesting how to efficiently model the geometric variations in large scale datasets. This paper proposes a novel Spatial-Temporal Alignment Network (STAN) that aims to learn geometric invariant representations for action recognition and action detection. The STAN model is very light-weighted and generic, which could be plugged into existing action recognition models like ResNet3D and the SlowFast with a very low extra computational cost. We test our STAN model extensively on AVA, Kinetics-400, AVA-Kinetics, Charades, and Charades-Ego datasets. The experimental results show that the STAN model can consistently improve the state of the arts in both action detection and action recognition tasks. We will release our data, models and code.
Occlusion is probably the biggest challenge for human pose estimation in the wild. Typical solutions often rely on intrusive sensors such as IMUs to detect occluded joints. To make the task truly unconstrained, we present AdaFuse, an adaptive multivi ew fusion method, which can enhance the features in occluded views by leveraging those in visible views. The core of AdaFuse is to determine the point-point correspondence between two views which we solve effectively by exploring the sparsity of the heatmap representation. We also learn an adaptive fusion weight for each camera view to reflect its feature quality in order to reduce the chance that good features are undesirably corrupted by ``bad views. The fusion model is trained end-to-end with the pose estimation network, and can be directly applied to new camera configurations without additional adaptation. We extensively evaluate the approach on three public datasets including Human3.6M, Total Capture and CMU Panoptic. It outperforms the state-of-the-arts on all of them. We also create a large scale synthetic dataset Occlusion-Person, which allows us to perform numerical evaluation on the occluded joints, as it provides occlusion labels for every joint in the images. The dataset and code are released at https://github.com/zhezh/adafuse-3d-human-pose.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا