ﻻ يوجد ملخص باللغة العربية
We present a systematic study of holographic correlators in a vast array of SCFTs with non-maximal superconformal symmetry. These theories include 4d $mathcal{N}=2$ SCFTs from D3-branes near F-theory singularities, 5d Seiberg exceptional theories and 6d E-string theory, as well as 3d and 4d phenomenological models with probe flavor branes. We consider current multiplets and their generalizations with higher weights, dual to massless and massive super gluons in the bulk. At leading order in the inverse central charge expansion, connected four-point functions of these operators correspond to tree-level gluon scattering amplitudes in AdS. We show that all such tree-level four-point amplitudes in all these theories are fully fixed by symmetries and consistency conditions and explicitly construct them. Our results encode a wealth of SCFT data and exhibit various interesting emergent structures. These include Parisi-Sourlas-like dimensional reductions, hidden conformal symmetry and an AdS version of the color-kinematic duality.
We parametrize the (2+1)-dimensional AdS space and the BTZ black hole with Fefferman-Graham coordinates starting from the AdS boundary. We consider various boundary metrics: Rindler, static de Sitter and FRW. In each case, we compute the holographic
We define a holographic dual to the Donaldson-Witten topological twist of $mathcal{N}=2$ gauge theories on a Riemannian four-manifold. This is described by a class of asymptotically locally hyperbolic solutions to $mathcal{N}=4$ gauged supergravity i
The eikonalized parton-parton scattering amplitude at large $sqrt{s}$ and large impact parameter, is dominated by the exchange of a hyperbolic surface in walled AdS. Its analytical continuation yields a worldsheet instanton that is at the origin of t
It is a long-standing conjecture that any CFT with a large central charge and a large gap $Delta_{text{gap}}$ in the spectrum of higher-spin single-trace operators must be dual to a local effective field theory in AdS. We prove a sharp form of this c
We study membrane configurations in AdS_{7/4}xS^{4/7}. The membranes are wrapped around the compact manifold S^{4/7} and are dynamically equivalent to bosonic strings in AdS_5. We thus conveniently identify them as Stringy Membranes. For the case of