ﻻ يوجد ملخص باللغة العربية
We study membrane configurations in AdS_{7/4}xS^{4/7}. The membranes are wrapped around the compact manifold S^{4/7} and are dynamically equivalent to bosonic strings in AdS_5. We thus conveniently identify them as Stringy Membranes. For the case of AdS_7xS^4, their construction is carried out by embedding the Polyakov action for classical bosonic strings in AdS_5, into the corresponding membrane action. Therefore, every string configuration in AdS_5 can be realized by an appropriately chosen stringy membrane in AdS_7xS^4. We discuss the possibility of this being also the case for stringy membranes in AdS_4xS^7/Z^k (k > 1 or k = 1). By performing a stability analysis to the constructed solutions, we find that the (membrane) fluctuations along their transverse directions are organized in multiple Lam{e} stability bands and gaps in the space of parameters of the configurations. In this membrane picture, strings exhibit a single band/gap structure.
We define a holographic dual to the Donaldson-Witten topological twist of $mathcal{N}=2$ gauge theories on a Riemannian four-manifold. This is described by a class of asymptotically locally hyperbolic solutions to $mathcal{N}=4$ gauged supergravity i
We develop a systematic unitarity method for loop-level AdS scattering amplitudes, dual to non-planar CFT correlators, from both bulk and boundary perspectives. We identify cut operators acting on bulk amplitudes that put virtual lines on shell, and
We study a class of exact supersymmetric solutions of type IIB Supergravity. They have an SO(4) x SU(2) x U(1) isometry and preserve generically 4 of the 32 supersymmetries of the theory. Asymptotically AdS_5 x S^5 solutions in this class are dual to
We study the AdS/CFT thermodynamics of the spatially isotropic counterpart of the Bjorken similarity flow in d-dimensional Minkowski space with d>=3, and of its generalisation to linearly expanding d-dimensional Friedmann-Robertson-Walker cosmologies
We construct a $p$-adic analog to AdS/CFT, where an unramified extension of the $p$-adic numbers replaces Euclidean space as the boundary and a version of the Bruhat-Tits tree replaces the bulk. Correlation functions are computed in the simple case o