ﻻ يوجد ملخص باللغة العربية
Opioid and substance misuse is rampant in the United States today, with the phenomenon known as the opioid crisis. The relationship between substance use and mental health has been extensively studied, with one possible relationship being substance misuse causes poor mental health. However, the lack of evidence on the relationship has resulted in opioids being largely inaccessible through legal means. This study analyzes the substance misuse posts on social media with the opioids being sold through crypto market listings. We use the Drug Abuse Ontology, state-of-the-art deep learning, and BERT-based models to generate sentiment and emotion for the social media posts to understand user perception on social media by investigating questions such as, which synthetic opioids people are optimistic, neutral, or negative about or what kind of drugs induced fear and sorrow or what kind of drugs people love or thankful about or which drug people think negatively about or which opioids cause little to no sentimental reaction. We also perform topic analysis associated with the generated sentiments and emotions to understand which topics correlate with peoples responses to various drugs. Our findings can help shape policy to help isolate opioid use cases where timely intervention may be required to prevent adverse consequences, prevent overdose-related deaths, and worsen the epidemic.
The opioid epidemic in the United States claims over 40,000 lives per year, and it is estimated that well over two million Americans have an opioid use disorder. Over-prescription and misuse of prescription opioids play an important role in the epide
Despite the influence that image-based communication has on online discourse, the role played by images in disinformation is still not well understood. In this paper, we present the first large-scale study of fauxtography, analyzing the use of manipu
The Ubiquitous nature of smartphones has significantly increased the use of social media platforms, such as Facebook, Twitter, TikTok, and LinkedIn, etc., among the public, government, and businesses. Facebook generated ~70 billion USD in 2019 in adv
There has been a tremendous rise in the growth of online social networks all over the world in recent years. It has facilitated users to generate a large amount of real-time content at an incessant rate, all competing with each other to attract enoug
We study the extent to which we can infer users geographical locations from social media. Location inference from social media can benefit many applications, such as disaster management, targeted advertising, and news content tailoring. The challenge