ﻻ يوجد ملخص باللغة العربية
Quantum measurement is ultimately a physical process, resulting from an interaction between the measured system and a measurement apparatus. Considering the physical process of measurement within a thermodynamic context naturally raises the following question: how can the work and heat resulting from the measurement process be interpreted? In the present manuscript, we model the measurement process for an arbitrary discrete observable as a measurement scheme. Here, the system to be measured is first unitarily coupled with a measurement apparatus, and subsequently the apparatus is measured by a pointer observable, thus producing a definite measurement outcome. The work can therefore be interpreted as the change in internal energy of the compound of system-plus-apparatus due to the unitary coupling. By the first law of thermodynamics, the heat is the subsequent change in internal energy of this compound due to the measurement of the pointer observable. However, in order for the apparatus to serve as a stable record for the measurement outcomes, the pointer observable must commute with the Hamiltonian, and its implementation must be repeatable. Given these minimal requirements, we show that the heat will necessarily be a classically fluctuating quantity.
We study the statistics of energy fluctuations in a three-level quantum system subject to a sequence of projective quantum measurements. We check that, as expected, the quantum Jarzynski equality holds provided that the initial state is thermal. The
We propose a quantum enhanced heat engine with entanglement. The key feature of our scheme is to utilize a superabsorption that exhibits an enhanced energy absorption by entangled qubits. While a conventional engine with separable qubits provides a s
In the frames of classical mechanics the generalized Langevin equation is derived for an arbitrary mechanical subsystem coupled to the harmonic bath of a solid. A time-acting temperature operator is introduced for the quantum Klein-Kramers and Smoluc
We consider a thermal quantum harmonic oscillator weakly coupled to a heat bath at a different temperature. We analytically study the quantum heat exchange statistics between the two systems using the quantum-optical master equation. We exactly compu
We study a quantum Stirling cycle which extracts work using quantized energy levels of a potential well. The work and the efficiency of the engine depend on the length of the potential well, and the Carnot efficiency is approached in a low temperatur