ﻻ يوجد ملخص باللغة العربية
In the frames of classical mechanics the generalized Langevin equation is derived for an arbitrary mechanical subsystem coupled to the harmonic bath of a solid. A time-acting temperature operator is introduced for the quantum Klein-Kramers and Smoluchowski equations, accounting for the effect of the quantum thermal bath oscillators. The model of Brownian emitters is theoretically studied and the relevant evolutionary equations for the probability density are derived. The Schrodinger equation is explained via collisions of the target point particles with the quantum force carriers, transmitting the fundamental interactions between the point particles. Thus, electrons and other point particles are no waves and the wavy chapter of quantum mechanics originated for the force carriers. A stochastic Lorentz-Langevin equation is proposed to describe the underlaying Brownian-like motion of the point particles in quantum mechanics. Considering the Brownian dynamics in the frames of the Bohmian mechanics, the density functional Bohm-Langevin equation is proposed, and the relevant Smoluchowski-Bohm equation is derived. A nonlinear master equation is proposed by proper quantization of the classical Klein-Kramers equation. Its equilibrium solution in the exact canonical Gibbs density operator, while the well-known Caldeira-Leggett equation is simply a linearization at high temperature. In the case of a free quantum Brownian particles, a new law for the spreading of the wave packet it discovered, which represents the quantum generalization of the classical Einstein law of Brownian motion. A new projector operator is proposed for the collapse of the wave function of a quantum particle moving in a classical environment. Its application results in dissipative Schrodinger equations, as well as in a new form of dissipative Liouville equation in classical mechanics.
The Klein-Kramers equation, governing the Brownian motion of a classical particle in quantum environment under the action of an arbitrary external potential, is derived. Quantum temperature and friction operators are introduced and at large friction
Quantum Brownian motion model is a typical model in the study of nonequilibrium quantum thermodynamics. Entropy is one of the most fundamental physical concepts in thermodynamics. In this work, by solving the quantum Langevin equation, we study the v
We discuss the connection between the out-of-time-ordered correlator and the number of harmonics of the phase-space Wigner distribution function. In particular, we show that both quantities grow exponentially for chaotic dynamics, with a rate determi
All physical systems are to some extent open and interacting with their environment. This insight, basic as it may seem, gives rise to the necessity of protecting quantum systems from decoherence in quantum technologies and is at the heart of the eme
The theory of quantum Brownian motion describes the properties of a large class of open quantum systems. Nonetheless, its description in terms of a Born-Markov master equation, widely used in the literature, is known to violate the positivity of the