ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling the evolution of the Suns open and total magnetic flux

63   0   0.0 ( 0 )
 نشر من قبل Natalie Krivova
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Solar activity in all its varied manifestations is driven by the magnetic field. Particularly important for many purposes are two global quantities, the Suns total and open magnetic flux, which can be computed from sunspot number records using models. Such sunspot-driven models, however, do not take into account the presence of magnetic flux during grand minima, such as the Maunder minimum. Here we present a major update of a widely used simple model, which now takes into account the observation that the distribution of all magnetic features on the Sun follows a single power law. The exponent of the power law changes over the solar cycle. This allows for the emergence of small-scale magnetic flux even when no sunspots are present for multiple decades and leads to non-zero total and open magnetic flux also in the deepest grand minima, such as the Maunder minimum, thus overcoming a major shortcoming of the earlier models. The results of the updated model compare well with the available observations and reconstructions of the solar total and open magnetic flux. This opens up the possibility of improved reconstructions of sunspot number from time series of cosmogenic isotope production rate.

قيم البحث

اقرأ أيضاً

Over the solar-activity cycle, there are extended periods where significant discrepancies occur between the spacecraft-observed total (unsigned) open magnetic flux and that determined from coronal models. In this article, the total open heliospheric magnetic flux is computed using two different methods and then compared with results obtained from in-situ interplanetary magnetic-field observations. The first method uses two different types of photospheric magnetic-field maps as input to the Wang Sheeley Arge (WSA) model: i) traditional Carrington or diachronic maps, and ii) Air Force Data Assimilative Photospheric Flux Transport model synchronic maps. The second method uses observationally derived helium and extreme-ultraviolet coronal-hole maps overlaid on the same magnetic-field maps in order to compute total open magnetic flux. The diachronic and synchronic maps are both constructed using magnetograms from the same source, namely the National Solar Observatory Kitt Peak Vacuum Telescope and Vector Spectromagnetograph. The results of this work show that the total open flux obtained from observationally derived coronal holes agrees remarkably well with that derived from WSA, especially near solar minimum. This suggests that, on average, coronal models capture well the observed large-scale coronal-hole structure over most of the solar cycle. Both methods show considerable deviations from total open flux deduced from spacecraft data, especially near solar maximum, pointing to something other than poorly determined coronal-hole area specification as the source of these discrepancies.
The strength of the radial component of the interplanetary magnetic field (IMF), which is a measure of the Suns total open flux, is observed to vary by roughly a factor of two over the 11 yr solar cycle. Several recent studies have proposed that the Suns open flux consists of a constant or floor component that dominates at sunspot minimum, and a time-varying component due to coronal mass ejections (CMEs). Here, we point out that CMEs cannot account for the large peaks in the IMF strength which occurred in 2003 and late 2014, and which coincided with peaks in the Suns equatorial dipole moment. We also show that near-Earth interplanetary CMEs, as identified in the catalog of Richardson and Cane, contribute at most $sim$30% of the average radial IMF strength even during sunspot maximum. We conclude that the long-term variation of the radial IMF strength is determined mainly by the Suns total dipole moment, with the quadrupole moment and CMEs providing an additional boost near sunspot maximum. Most of the open flux is rooted in coronal holes, whose solar cycle evolution in turn reflects that of the Suns lowest-order multipoles.
The solar magnetic field is the primary agent that drives solar activity and couples the Sun to the Heliosphere. Although the details of this coupling depend on the quantitative properties of the field, many important aspects of the corona - solar wi nd connection can be understood by considering only the general topological properties of those regions on the Sun where the field extends from the photosphere out to interplanetary space, the so-called open field regions that are usually observed as coronal holes. From the simple assumptions that underlie the standard quasi-steady corona-wind theoretical models, and that are likely to hold for the Sun, as well, we derive two conjectures on the possible structure and dynamics of coronal holes: (1) Coronal holes are unique in that every unipolar region on the photosphere can contain at most one coronal hole. (2) Coronal holes of nested polarity regions must themselves be nested. Magnetic reconnection plays the central role in enforcing these constraints on the field topology. From these conjectures we derive additional properties for the topology of open field regions, and propose several observational predictions for both the slowly varying and transient corona/solar wind.
Many scientists use coronal hole (CH) detections to infer open magnetic flux. Detection techniques differ in the areas that they assign as open, and may obtain different values for the open magnetic flux. We characterize the uncertainties of these me thods, by applying six different detection methods to deduce the area and open flux of a near-disk center CH observed on 9/19/2010, and applying a single method to five different EUV filtergrams for this CH. Open flux was calculated using five different magnetic maps. The standard deviation (interpreted as the uncertainty) in the open flux estimate for this CH was about 26%. However, including the variability of different magnetic data sources, this uncertainty almost doubles to 45%. We use two of the methods to characterize the area and open flux for all CHs in this time period. We find that the open flux is greatly underestimated compared to values inferred from in-situ measurements (by 2.2-4 times). We also test our detection techniques on simulated emission images from a thermodynamic MHD model of the solar corona. We find that the methods overestimate the area and open flux in the simulated CH, but the average error in the flux is only about 7%. The full-Sun detections on the simulated corona underestimate the model open flux, but by factors well below what is needed to account for the missing flux in the observations. Under-detection of open flux in coronal holes likely contributes to the recognized deficit in solar open flux, but is unlikely to resolve it.
In this paper, we aim to develop a predictive model for solar radial $p$-mode line profiles in the velocity spectrum. Unlike the approach favoured by prior studies, this model is not described by free parameters and we do not use fitting procedures t o match the observations. Instead, we use an analytical turbulence model coupled with constraints extracted from a 3D hydrodynamic simulation of the solar atmosphere. We then compare the resulting asymmetries with their observationally derived counterpart. We find that stochastic excitation localised beneath the mode upper turning point generates negative asymmetry for $ u < u_text{max}$ and positive asymmetry for $ u > u_text{max}$. On the other hand, stochastic excitation localised above this limit generates negative asymmetry throughout the $p$-mode spectrum. As a result of the spatial extent of the source of excitation, both cases play a role in the total observed asymmetries. By taking this spatial extent into account and using a realistic description of the spectrum of turbulent kinetic energy, both a qualitative and quantitative agreement can be found with solar observations perfoemed by the GONG network. We also find that the impact of the correlation between acoustic noise and oscillation is negligible for mode asymmetry in the velocity spectrum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا