ﻻ يوجد ملخص باللغة العربية
The strength of the radial component of the interplanetary magnetic field (IMF), which is a measure of the Suns total open flux, is observed to vary by roughly a factor of two over the 11 yr solar cycle. Several recent studies have proposed that the Suns open flux consists of a constant or floor component that dominates at sunspot minimum, and a time-varying component due to coronal mass ejections (CMEs). Here, we point out that CMEs cannot account for the large peaks in the IMF strength which occurred in 2003 and late 2014, and which coincided with peaks in the Suns equatorial dipole moment. We also show that near-Earth interplanetary CMEs, as identified in the catalog of Richardson and Cane, contribute at most $sim$30% of the average radial IMF strength even during sunspot maximum. We conclude that the long-term variation of the radial IMF strength is determined mainly by the Suns total dipole moment, with the quadrupole moment and CMEs providing an additional boost near sunspot maximum. Most of the open flux is rooted in coronal holes, whose solar cycle evolution in turn reflects that of the Suns lowest-order multipoles.
Coronal Mass Ejections (CMEs) contributes to the perturbation of solar wind in the heliosphere. Thus, depending on the different phases of the solar cycle and the rate of CME occurrence, contribution of CMEs to solar wind parameters near the Earth ch
Similar to the Sun, other stars shed mass and magnetic flux via ubiquitous quasi-steady wind and episodic stellar coronal mass ejections (CMEs). We investigate the mass loss rate via solar wind and CMEs as a function of solar magnetic variability rep
In this study we present a statistical analysis of 53 fast Earth-directed halo CMEs observed by the SOHO/LASCO instrument during the period Jan. 2009-Sep. 2015, and we use this CME sample to test the capabilities of a Sun-to-Earth prediction scheme f
We present a statistical analysis of 43 coronal dimming events, associated with Earth-directed CMEs that occurred during the period of quasi-quadrature of the SDO and STEREO satellites. We studied coronal dimmings that were observed above the limb by
We demonstrate how the parameters of a Gibson-Low flux-rope-based coronal mass ejection (CME) can be constrained using remote observations. Our Multi Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS) has been used to simulate the propagation of a CME