ترغب بنشر مسار تعليمي؟ اضغط هنا

Pyfectious: An individual-level simulator to discover optimal containment polices for epidemic diseases

73   0   0.0 ( 0 )
 نشر من قبل Arash Mehrjou
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Simulating the spread of infectious diseases in human communities is critical for predicting the trajectory of an epidemic and verifying various policies to control the devastating impacts of the outbreak. Many existing simulators are based on compartment models that divide people into a few subsets and simulate the dynamics among those subsets using hypothesized differential equations. However, these models lack the requisite granularity to study the effect of intelligent policies that influence every individual in a particular way. In this work, we introduce a simulator software capable of modeling a population structure and controlling the diseases propagation at an individualistic level. In order to estimate the confidence of the conclusions drawn from the simulator, we employ a comprehensive probabilistic approach where the entire population is constructed as a hierarchical random variable. This approach makes the inferred conclusions more robust against sampling artifacts and gives confidence bounds for decisions based on the simulation results. To showcase potential applications, the simulator parameters are set based on the formal statistics of the COVID-19 pandemic, and the outcome of a wide range of control measures is investigated. Furthermore, the simulator is used as the environment of a reinforcement learning problem to find the optimal policies to control the pandemic. The obtained experimental results indicate the simulators adaptability and capacity in making sound predictions and a successful policy derivation example based on real-world data. As an exemplary application, our results show that the proposed policy discovery method can lead to control measures that produce significantly fewer infected individuals in the population and protect the health system against saturation.



قيم البحث

اقرأ أيضاً

There are often multiple diseases with cross immunity competing for vaccination resources. Here we investigate the optimal vaccination program in a two-layer Susceptible-Infected-Removed (SIR) model, where two diseases with cross immunity spread in t he same population, and vaccines for both diseases are available. We identify three scenarios of the optimal vaccination program, which prevents the outbreaks of both diseases at the minimum cost. We analytically derive a criterion to specify the optimal program based on the costs for different vaccines.
After the introduction of drastic containment measures aimed at stopping the epidemic contagion from SARS-CoV2, many governments have adopted a strategy based on a periodic relaxation of such measures in the face of a severe economic crisis caused by lockdowns. Assessing the impact of such openings in relation to the risk of a resumption of the spread of the disease is an extremely difficult problem due to the many unknowns concerning the actual number of people infected, the actual reproduction number and infection fatality rate of the disease. In this work, starting from a compartmental model with a social structure and stochastic inputs, we derive models with multiple feedback controls depending on the social activities that allow to assess the impact of a selective relaxation of the containment measures in the presence of uncertain data. Specific contact patterns in the home, work, school and other locations have been considered. Results from different scenarios concerning the first wave of the epidemic in some major countries, including Germany, France, Italy, Spain, the United Kingdom and the United States, are presented and discussed.
79 - Reza Sameni 2020
In this research, we study the propagation patterns of epidemic diseases such as the COVID-19 coronavirus, from a mathematical modeling perspective. The study is based on an extensions of the well-known susceptible-infected-recovered (SIR) family of compartmental models. It is shown how social measures such as distancing, regional lockdowns, quarantine and global public health vigilance, influence the model parameters, which can eventually change the mortality rates and active contaminated cases over time, in the real world. As with all mathematical models, the predictive ability of the model is limited by the accuracy of the available data and to the so-called textit{level of abstraction} used for modeling the problem. In order to provide the broader audience of researchers a better understanding of spreading patterns of epidemic diseases, a short introduction on biological systems modeling is also presented and the Matlab source codes for the simulations are provided online.
Between pandemics, the influenza virus exhibits periods of incremental evolution via a process known as antigenic drift. This process gives rise to a sequence of strains of the pathogen that are continuously replaced by newer strains, preventing a bu ild up of immunity in the host population. In this paper, a parsimonious epidemic model is defined that attempts to capture the dynamics of evolving strains within a host population. The `evolving strains epidemic model has many properties that lie in-between the Susceptible-Infected-Susceptible and the Susceptible-Infected-Removed epidemic models, due to the fact that individuals can only be infected by each strain once, but remain susceptible to reinfection by newly emerged strains. Coupling results are used to identify key properties, such as the time to extinction. A range of reproduction numbers are explored to characterize the model, including a novel quasi-stationary reproduction number that can be used to describe the re-emergence of the pathogen into a population with `average levels of strain immunity, analogous to the beginning of the winter peak in influenza. Finally the quasi-stationary distribution of the evolving strains model is explored via simulation.
67 - Juan Santos 2021
A pandemic caused by a new coronavirus (COVID-19) has spread worldwide, inducing an epidemic still active in Argentina. In this chapter, we present a case study using an SEIR (Susceptible-Exposed-Infected-Recovered) diffusion model of fractional orde r in time to analyze the evolution of the epidemic in Buenos Aires and neighboring areas (Region Metropolitana de Buenos Aires, (RMBA)) comprising about 15 million inhabitants. In the SEIR model, individuals are divided into four classes, namely, susceptible (S), exposed (E), infected (I) and recovered (R). The SEIR model of fractional order allows for the incorporation of memory, with hereditary properties of the system, being a generalization of the classic SEIR first-order system, where such effects are ignored. Furthermore, the fractional model provides one additional parameter to obtain a better fit of the data. The parameters of the model are calibrated by using as data the number of casualties officially reported. Since infinite solutions honour the data, we show a set of cases with different values of the lockdown parameters, fatality rate, and incubation and infectious periods. The different reproduction ratios R0 and infection fatality rates (IFR) so obtained indicate the results may differ from recent reported values, constituting possible alternative solutions. A comparison with results obtained with the classic SEIR model is also included. The analysis allows us to study how isolation and social distancing measures affect the time evolution of the epidemic.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا