ﻻ يوجد ملخص باللغة العربية
Simulating the spread of infectious diseases in human communities is critical for predicting the trajectory of an epidemic and verifying various policies to control the devastating impacts of the outbreak. Many existing simulators are based on compartment models that divide people into a few subsets and simulate the dynamics among those subsets using hypothesized differential equations. However, these models lack the requisite granularity to study the effect of intelligent policies that influence every individual in a particular way. In this work, we introduce a simulator software capable of modeling a population structure and controlling the diseases propagation at an individualistic level. In order to estimate the confidence of the conclusions drawn from the simulator, we employ a comprehensive probabilistic approach where the entire population is constructed as a hierarchical random variable. This approach makes the inferred conclusions more robust against sampling artifacts and gives confidence bounds for decisions based on the simulation results. To showcase potential applications, the simulator parameters are set based on the formal statistics of the COVID-19 pandemic, and the outcome of a wide range of control measures is investigated. Furthermore, the simulator is used as the environment of a reinforcement learning problem to find the optimal policies to control the pandemic. The obtained experimental results indicate the simulators adaptability and capacity in making sound predictions and a successful policy derivation example based on real-world data. As an exemplary application, our results show that the proposed policy discovery method can lead to control measures that produce significantly fewer infected individuals in the population and protect the health system against saturation.
There are often multiple diseases with cross immunity competing for vaccination resources. Here we investigate the optimal vaccination program in a two-layer Susceptible-Infected-Removed (SIR) model, where two diseases with cross immunity spread in t
After the introduction of drastic containment measures aimed at stopping the epidemic contagion from SARS-CoV2, many governments have adopted a strategy based on a periodic relaxation of such measures in the face of a severe economic crisis caused by
In this research, we study the propagation patterns of epidemic diseases such as the COVID-19 coronavirus, from a mathematical modeling perspective. The study is based on an extensions of the well-known susceptible-infected-recovered (SIR) family of
Between pandemics, the influenza virus exhibits periods of incremental evolution via a process known as antigenic drift. This process gives rise to a sequence of strains of the pathogen that are continuously replaced by newer strains, preventing a bu
A pandemic caused by a new coronavirus (COVID-19) has spread worldwide, inducing an epidemic still active in Argentina. In this chapter, we present a case study using an SEIR (Susceptible-Exposed-Infected-Recovered) diffusion model of fractional orde