ترغب بنشر مسار تعليمي؟ اضغط هنا

Fractional linear maps in general relativity and quantum mechanics

92   0   0.0 ( 0 )
 نشر من قبل Giampiero Esposito Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper studies the nature of fractional linear transformations in a general relativity context as well as in a quantum theoretical framework. Two features are found to deserve special attention: the first is the possibility of separating the limit-point condition at infinity into loxodromic, hyperbolic, parabolic and elliptic cases. This is useful in a context in which one wants to look for a correspondence between essentially self-adjoint spherically symmetric Hamiltonians of quantum physics and the theory of Bondi-Metzner-Sachs transformations in general relativity. The analogy therefore arising, suggests that further investigations might be performed for a theory in which the role of fractional linear maps is viewed as a bridge between the quantum theory and general relativity. The second aspect to point out is the possibility of interpreting the limit-point condition at both ends of the positive real line, for a second-order singular differential operator, which occurs frequently in applied quantum mechanics, as the limiting procedure arising from a very particular Kleinian group which is the hyperbolic cyclic group. In this framework, this work finds that a consistent system of equations can be derived and studied. Hence one is led to consider the entire transcendental functions, from which it is possible to construct a fundamental system of solutions of a second-order differential equation with singular behavior at both ends of the positive real line, which in turn satisfy the limit-point conditions.


قيم البحث

اقرأ أيضاً

124 - R. Casadio , F. Scardigli 2020
The Generalized Uncertainty Principle (GUP) has been directly applied to the motion of (macroscopic) test bodies on a given space-time in order to compute corrections to the classical orbits predicted in Newtonian Mechanics or General Relativity. The se corrections generically violate the Equivalence Principle. The GUP has also been indirectly applied to the gravitational source by relating the GUP modified Hawking temperature to a deformation of the background metric. Such a deformed background metric determines new geodesic motions without violating the Equivalence Principle. We point out here that the two effects are mutually exclusive when compared with experimental bounds. Moreover, the former stems from modified Poisson brackets obtained from a wrong classical limit of the deformed canonical commutators.
We study the spontaneously induced general relativity (GR) from the scalar-tensor gravity. We demonstrate by numerical methods that a novel inner core can be connected to the Schwarzschild exterior with cosmological constants and any sectional curvat ure. Deriving an analytic core metric for a general exterior, we show that all the nontrivial features of the core, including the locally holographic entropy packing, are universal for the general exterior in static spacetimes. We also investigate whether the f(R) gravity can accommodate the nontrivial core.
We show that there is an inconsistency in the class of solutions obtained in Phys. Rev. D {bf 95}, 084037 (2017). This inconsistency is due to the approximate relation between lagrangian density and its derivative for Non-Linear Electrodynamics. We p resent an algorithm to obtain new classes of solutions.
67 - G.W. Gibbons 2015
The hodograph of a non-relativistic particle motion in Euclidean space is the curve described by its momentum vector. For a general central orbit problem the hodograph is the inverse of the pedal curve of the orbit, (i.e. its polar reciprocal), rotat ed through a right angle. Hamilton showed that for the Kepler/Coulomb problem, the hodograph is a circle whose centre is in the direction of a conserved eccentricity vector. The addition of an inverse cube law force induces the eccentricity vector to precess and with it the hodograph. The same effect is produced by a cosmic string. If one takes the relativistic momentum to define the hodograph, then for the Sommerfeld (i.e. the special relativistic Kepler/Coulomb problem) there is an effective inverse cube force which causes the hodograph to precess. If one uses Schwarzschild coordinates one may also define a a hodograph for timelike or null geodesics moving around a black hole. Iheir pedal equations are given. In special cases the hodograph may be found explicitly. For example the orbit of a photon which starts from the past singularity, grazes the horizon and returns to future singularity is a cardioid, its pedal equation is Cayleys sextic the inverse of which is Tschirhausens cubic. It is also shown that that provided one uses Beltrami coordinates, the hodograph for the non-relativistic Kepler problem on hyperbolic space is also a circle. An analogous result holds for the the round 3-sphere. In an appendix the hodograph of a particle freely moving on a group manifold equipped with a left-invariant metric is defined.
We investigate a particular type of classical nonsingular bouncing cosmology, which results from general relativity if we allow for degenerate metrics. The simplest model has a matter content with a constant equation-of-state parameter and we get the modified Hubble diagrams for both the luminosity distance and the angular diameter distance. Based on these results, we present a Gedankenexperiment to determine the length scale of the spacetime defect which has replaced the big bang singularity. A possibly more realistic model has an equation-of-state parameter which is different before and after the bounce. This last model also provides an upper bound on the defect length scale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا