ترغب بنشر مسار تعليمي؟ اضغط هنا

Embedding API Dependency Graph for Neural Code Generation

160   0   0.0 ( 0 )
 نشر من قبل Chen Lyu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The problem of code generation from textual program descriptions has long been viewed as a grand challenge in software engineering. In recent years, many deep learning based approaches have been proposed, which can generate a sequence of code from a sequence of textual program description. However, the existing approaches ignore the global relationships among API methods, which are important for understanding the usage of APIs. In this paper, we propose to model the dependencies among API methods as an API dependency graph (ADG) and incorporate the graph embedding into a sequence-to-sequence (Seq2Seq) model. In addition to the existing encoder-decoder structure, a new module named ``embedder is introduced. In this way, the decoder can utilize both global structural dependencies and textual program description to predict the target code. We conduct extensive code generation experiments on three public datasets and in two programming languages (Python and Java). Our proposed approach, called ADG-Seq2Seq, yields significant improvements over existing state-of-the-art methods and maintains its performance as the length of the target code increases. Extensive ablation tests show that the proposed ADG embedding is effective and outperforms the baselines.



قيم البحث

اقرأ أيضاً

256 - Chen Zeng , Yue Yu , Shanshan Li 2021
With the rapid increase in the amount of public code repositories, developers maintain a great desire to retrieve precise code snippets by using natural language. Despite existing deep learning based approaches(e.g., DeepCS and MMAN) have provided th e end-to-end solutions (i.e., accepts natural language as queries and shows related code fragments retrieved directly from code corpus), the accuracy of code search in the large-scale repositories is still limited by the code representation (e.g., AST) and modeling (e.g., directly fusing the features in the attention stage). In this paper, we propose a novel learnable deep Graph for Code Search (calleddeGraphCS), to transfer source code into variable-based flow graphs based on the intermediate representation technique, which can model code semantics more precisely compared to process the code as text directly or use the syntactic tree representation. Furthermore, we propose a well-designed graph optimization mechanism to refine the code representation, and apply an improved gated graph neural network to model variable-based flow graphs. To evaluate the effectiveness of deGraphCS, we collect a large-scale dataset from GitHub containing 41,152 code snippets written in C language, and reproduce several typical deep code search methods for comparison. Besides, we design a qualitative user study to verify the practical value of our approach. The experimental results have shown that deGraphCS can achieve state-of-the-art performances, and accurately retrieve code snippets satisfying the needs of the users.
Robustness is a key concern for Rust library development because Rust promises no risks of undefined behaviors if developers use safe APIs only. Fuzzing is a practical approach for examining the robustness of programs. However, existing fuzzing tools are not directly applicable to library APIs due to the absence of fuzz targets. It mainly relies on human efforts to design fuzz targets case by case which is labor-intensive. To address this problem, this paper proposes a novel automated fuzz target generation approach for fuzzing Rust libraries via API dependency graph traversal. We identify several essential requirements for library fuzzing, including validity and effectiveness of fuzz targets, high API coverage, and efficiency. To meet these requirements, we first employ breadth-first search with pruning to find API sequences under a length threshold, then we backward search longer sequences for uncovered APIs, and finally we optimize the sequence set as a set covering problem. We implement our fuzz target generator and conduct fuzzing experiments with AFL++ on several real-world popular Rust projects. Our tool finally generates 7 to 118 fuzz targets for each library with API coverage up to 0.92. We exercise each target with a threshold of 24 hours and finally find 30 previously-unknown bugs from seven libraries.
Context based API recommendation is an important way to help developers find the needed APIs effectively and efficiently. For effective API recommendation, we need not only a joint view of both structural and textual code information, but also a holi stic view of correlated API usage in control and data flow graph as a whole. Unfortunately, existing API recommendation methods exploit structural or textual code information separately. In this work, we propose a novel API recommendation approach called APIRec-CST (API Recommendation by Combining Structural and Textual code information). APIRec-CST is a deep learning model that combines the API usage with the text information in the source code based on an API Context Graph Network and a Code Token Network that simultaneously learn structural and textual features for API recommendation. We apply APIRec-CST to train a model for JDK library based on 1,914 open-source Java projects and evaluate the accuracy and MRR (Mean Reciprocal Rank) of API recommendation with another 6 open-source projects. The results show that our approach achieves respectively a top-1, top-5, top-10 accuracy and MRR of 60.3%, 81.5%, 87.7% and 69.4%, and significantly outperforms an existing graph-based statistical approach and a tree-based deep learning approach for API recommendation. A further analysis shows that textual code information makes sense and improves the accuracy and MRR. We also conduct a user study in which two groups of students are asked to finish 6 programming tasks with or without our APIRec-CST plugin. The results show that APIRec-CST can help the students to finish the tasks faster and more accurately and the feedback on the usability is overwhelmingly positive.
155 - Xuye Liu , Dakuo Wang , April Wang 2021
Jupyter notebook allows data scientists to write machine learning code together with its documentation in cells. In this paper, we propose a new task of code documentation generation (CDG) for computational notebooks. In contrast to the previous CDG tasks which focus on generating documentation for single code snippets, in a computational notebook, one documentation in a markdown cell often corresponds to multiple code cells, and these code cells have an inherent structure. We proposed a new model (HAConvGNN) that uses a hierarchical attention mechanism to consider the relevant code cells and the relevant code tokens information when generating the documentation. Tested on a new corpus constructed from well-documented Kaggle notebooks, we show that our model outperforms other baseline models.
Code generation is crucial to reduce manual software development efforts. Recently, neural techniques have been used to generate source code automatically. While promising, these approaches are evaluated on tasks for generating code in single program ming languages. However, in actual development, one programming language is often embedded in another. For example, SQL statements are often embedded as strings in base programming languages such as Python and Java, and JavaScript programs are often embedded in sever-side programming languages, such as PHP, Java, and Python. We call this a turducken-style programming. In this paper, we define a new code generation task: given a natural language comment, this task aims to generate a program in a base language with an embedded language. To our knowledge, this is the first turducken-style code generation task. For this task, we present Lyra: a dataset in Python with embedded SQL. This dataset contains 2,000 carefully annotated database manipulation programs from real usage projects. Each program is paired with both a Chinese comment and an English comment. In our experiment, we adopted Transformer, a state-of-the-art technique, as the baseline. In the best setting, Transformer achieves 0.5% and 1.5% AST exact matching accuracy using Chinese and English comments, respectively. Therefore, we believe that Lyra provides a new challenge for code generation.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا