ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring Sample Efficiency and Generalization in Reinforcement Learning Benchmarks: NeurIPS 2020 Procgen Benchmark

117   0   0.0 ( 0 )
 نشر من قبل Sharada Mohanty
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The NeurIPS 2020 Procgen Competition was designed as a centralized benchmark with clearly defined tasks for measuring Sample Efficiency and Generalization in Reinforcement Learning. Generalization remains one of the most fundamental challenges in deep reinforcement learning, and yet we do not have enough benchmarks to measure the progress of the community on Generalization in Reinforcement Learning. We present the design of a centralized benchmark for Reinforcement Learning which can help measure Sample Efficiency and Generalization in Reinforcement Learning by doing end to end evaluation of the training and rollout phases of thousands of user submitted code bases in a scalable way. We designed the benchmark on top of the already existing Procgen Benchmark by defining clear tasks and standardizing the end to end evaluation setups. The design aims to maximize the flexibility available for researchers who wish to design future iterations of such benchmarks, and yet imposes necessary practical constraints to allow for a system like this to scale. This paper presents the competition setup and the details and analysis of the top solutions identified through this setup in context of 2020 iteration of the competition at NeurIPS.

قيم البحث

اقرأ أيضاً

241 - Yiding Jiang 2020
Understanding generalization in deep learning is arguably one of the most important questions in deep learning. Deep learning has been successfully adopted to a large number of problems ranging from pattern recognition to complex decision making, but many recent researchers have raised many concerns about deep learning, among which the most important is generalization. Despite numerous attempts, conventional statistical learning approaches have yet been able to provide a satisfactory explanation on why deep learning works. A recent line of works aims to address the problem by trying to predict the generalization performance through complexity measures. In this competition, we invite the community to propose complexity measures that can accurately predict generalization of models. A robust and general complexity measure would potentially lead to a better understanding of deep learnings underlying mechanism and behavior of deep models on unseen data, or shed light on better generalization bounds. All these outcomes will be important for making deep learning more robust and reliable.
Training an agent to solve control tasks directly from high-dimensional images with model-free reinforcement learning (RL) has proven difficult. A promising approach is to learn a latent representation together with the control policy. However, fitti ng a high-capacity encoder using a scarce reward signal is sample inefficient and leads to poor performance. Prior work has shown that auxiliary losses, such as image reconstruction, can aid efficient representation learning. However, incorporating reconstruction loss into an off-policy learning algorithm often leads to training instability. We explore the underlying reasons and identify variational autoencoders, used by previous investigations, as the cause of the divergence. Following these findings, we propose effective techniques to improve training stability. This results in a simple approach capable of matching state-of-the-art model-free and model-based algorithms on MuJoCo control tasks. Furthermore, our approach demonstrates robustness to observational noise, surpassing existing approaches in this setting. Code, results, and videos are anonymously available at https://sites.google.com/view/sac-ae/home.
While current benchmark reinforcement learning (RL) tasks have been useful to drive progress in the field, they are in many ways poor substitutes for learning with real-world data. By testing increasingly complex RL algorithms on low-complexity simul ation environments, we often end up with brittle RL policies that generalize poorly beyond the very specific domain. To combat this, we propose three new families of benchmark RL domains that contain some of the complexity of the natural world, while still supporting fast and extensive data acquisition. The proposed domains also permit a characterization of generalization through fair train/test separation, and easy comparison and replication of results. Through this work, we challenge the RL research community to develop more robust algorithms that meet high standards of evaluation.
235 - Wenlong Mou , Zheng Wen , Xi Chen 2020
We study the optimal sample complexity in large-scale Reinforcement Learning (RL) problems with policy space generalization, i.e. the agent has a prior knowledge that the optimal policy lies in a known policy space. Existing results show that without a generalization model, the sample complexity of an RL algorithm will inevitably depend on the cardinalities of state space and action space, which are intractably large in many practical problems. To avoid such undesirable dependence on the state and action space sizes, this paper proposes a new notion of eluder dimension for the policy space, which characterizes the intrinsic complexity of policy learning in an arbitrary Markov Decision Process (MDP). Using a simulator oracle, we prove a near-optimal sample complexity upper bound that only depends linearly on the eluder dimension. We further prove a similar regret bound in deterministic systems without the simulator.
Although deep reinforcement learning has led to breakthroughs in many difficult domains, these successes have required an ever-increasing number of samples, affording only a shrinking segment of the AI community access to their development. Resolutio n of these limitations requires new, sample-efficient methods. To facilitate research in this direction, we propose this second iteration of the MineRL Competition. The primary goal of the competition is to foster the development of algorithms which can efficiently leverage human demonstrations to drastically reduce the number of samples needed to solve complex, hierarchical, and sparse environments. To that end, participants compete under a limited environment sample-complexity budget to develop systems which solve the MineRL ObtainDiamond task in Minecraft, a sequential decision making environment requiring long-term planning, hierarchical control, and efficient exploration methods. The competition is structured into two rounds in which competitors are provided several pair

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا