ترغب بنشر مسار تعليمي؟ اضغط هنا

On the local behavior of weighted orbital integrals and the affine Springer fibers

222   0   0.0 ( 0 )
 نشر من قبل Zongbin Chen
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Zongbin Chen




اسأل ChatGPT حول البحث

We show the rationality of a generating series from the affine Springer fibers. The main ingredient is the homogeneity of the Arthur-Shalika germ expansion for the weighted orbital integrals.



قيم البحث

اقرأ أيضاً

145 - Julianna Tymoczko 2016
This survey paper describes Springer fibers, which are used in one of the earliest examples of a geometric representation. We will compare and contrast them with Schubert varieties, another family of subvarieties of the flag variety that play an impo rtant role in representation theory and combinatorics, but whose geometry is in many respects simpler. The end of the paper describes a way that Springer fibers and Schubert varieties are related, as well as open questions.
In this paper we compute the cohomology of the Fano varieties of $k$-planes in the smooth complete intersection of two quadrics in $mathbb{P}^{2g+1}$, using Springer theory for symmetric spaces.
In this paper we introduce a certain class of families of Hessenberg varieties arising from Springer theory for symmetric spaces. We study the geometry of those Hessenberg varieties and investigate their monodromy representations in detail using the geometry of complete intersections of quadrics. We obtain decompositions of these monodromy representations into irreducibles and compute the Fourier transforms of the IC complexes associated to these irreducible representations. The results of the paper refine (part of) the Springer correspondece for the split symmetric pair (SL(N),SO(N)) in [CVX2].
We introduce a family of varieties $Y_{n,lambda,s}$, which we call the $Delta$-Springer varieties, that generalize the type A Springer fibers. We give an explicit presentation of the cohomology ring $H^*(Y_{n,lambda,s})$ and show that there is a symm etric group action on this ring generalizing the Springer action on the cohomology of a Springer fiber. In particular, the top cohomology groups are induced Specht modules. The $lambda=(1^k)$ case of this construction gives a compact geometric realization for the expression in the Delta Conjecture at $t=0$. Finally, we generalize results of De Concini and Procesi on the scheme of diagonal nilpotent matrices by constructing an ind-variety $Y_{n,lambda}$ whose cohomology ring is isomorphic to the coordinate ring of the scheme-theoretic intersection of an Eisenbud-Saltman rank variety and diagonal matrices.
118 - Mikhail Grinberg 2020
We provide some corrections and clarifications to the paper [Gr3] of the title. In particular, we clarify the left/right conventions on complex reflection groups and their braid groups. Most importantly, we fill in a gap related to the treatment of c uts in the Picard-Lefschetz theory part of the argument. The statements of the main results are not affected.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا