ترغب بنشر مسار تعليمي؟ اضغط هنا

The geometry and combinatorics of Springer fibers

146   0   0.0 ( 0 )
 نشر من قبل Julianna S. Tymoczko
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English
 تأليف Julianna Tymoczko




اسأل ChatGPT حول البحث

This survey paper describes Springer fibers, which are used in one of the earliest examples of a geometric representation. We will compare and contrast them with Schubert varieties, another family of subvarieties of the flag variety that play an important role in representation theory and combinatorics, but whose geometry is in many respects simpler. The end of the paper describes a way that Springer fibers and Schubert varieties are related, as well as open questions.



قيم البحث

اقرأ أيضاً

We introduce a family of varieties $Y_{n,lambda,s}$, which we call the $Delta$-Springer varieties, that generalize the type A Springer fibers. We give an explicit presentation of the cohomology ring $H^*(Y_{n,lambda,s})$ and show that there is a symm etric group action on this ring generalizing the Springer action on the cohomology of a Springer fiber. In particular, the top cohomology groups are induced Specht modules. The $lambda=(1^k)$ case of this construction gives a compact geometric realization for the expression in the Delta Conjecture at $t=0$. Finally, we generalize results of De Concini and Procesi on the scheme of diagonal nilpotent matrices by constructing an ind-variety $Y_{n,lambda}$ whose cohomology ring is isomorphic to the coordinate ring of the scheme-theoretic intersection of an Eisenbud-Saltman rank variety and diagonal matrices.
221 - Zongbin Chen 2021
We show the rationality of a generating series from the affine Springer fibers. The main ingredient is the homogeneity of the Arthur-Shalika germ expansion for the weighted orbital integrals.
135 - Sanjaye Ramgoolam 2016
Group algebras of permutations have proved highly useful in solving a number of problems in large N gauge theories. I review the use of permutations in classifying gauge invariants in one-matrix and multi-matrix models and computing their correlators . These methods are also applicable to tensor models and have revealed a link between tensor models and the counting of branched covers. The key idea is to parametrize $U(N)$ gauge invariants using permutations, subject to equivalences. Correlators are related to group theoretic properties of these equivalence classes. Fourier transformation on symmetric groups by means of representation theory offers nice bases of functions on these equivalence classes. This has applications in AdS/CFT in identifying CFT duals of giant gravitons and their perturbations. It has also lead to general results on quiver gauge theory correlators, uncovering links to two dimensional topological field theory and the combinatorics of trace monoids.
Springer fibers are subvarieties of the flag variety parametrized by partitions; they are central objects of study in geometric representation theory. Schubert varieties are subvarieties of the flag variety that induce a well-known basis for the coho mology of the flag variety. This paper relates these two varieties combinatorially. We prove that the Betti numbers of the Springer fiber associated to a partition with at most three rows or two columns are equal to the Betti numbers of a specific union of Schubert varieties.
349 - Takuro Abe 2018
In the theory of hyperplane arrangements, the most important and difficult problem is the combinatorial dependency of several properties. In this atricle, we prove that Teraos celebrated addition-deletion theorem for free arrangements is combinatoria l, i.e., whether you can apply it depends only on the intersection lattice of arrangements. The proof is based on a classical technique. Since some parts are already completed recently, we prove the rest part, i.e., the combinatoriality of the addition theorem. As a corollary, we can define a new class of free arrangements called the additionally free arrangement of hyperplanes, which can be constructed from the empty arrangement by using only the addition theorem. Then we can show that Teraos conjecture is true in this class. As an application, we can show that every ideal-Shi arrangement is additionally free, implying that their freeness is combinatorial.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا