ترغب بنشر مسار تعليمي؟ اضغط هنا

Accurate Assessment via Process Data

69   0   0.0 ( 0 )
 نشر من قبل Susu Zhang
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Accurate assessment of students ability is the key task of a test. Assessments based on final responses are the standard. As the infrastructure advances, substantially more information is observed. One of such instances is the process data that is collected by computer-based interactive items, which contain a students detailed interactive processes. In this paper, we show both theoretically and empirically that appropriately including such information in the assessment will substantially improve relevant assessment precision. The precision is measured empirically by out-of-sample test reliability.



قيم البحث

اقرأ أيضاً

Computer-based interactive items have become prevalent in recent educational assessments. In such items, the entire human-computer interactive process is recorded in a log file and is known as the response process. This paper aims at extracting usefu l information from response processes. In particular, we consider an exploratory latent variable analysis for process data. Latent variables are extracted through a multidimensional scaling framework and can be empirically proved to contain more information than classic binary responses in terms of out-of-sample prediction of many variables.
Accurate real-time tracking of influenza outbreaks helps public health officials make timely and meaningful decisions that could save lives. We propose an influenza tracking model, ARGO (AutoRegression with GOogle search data), that uses publicly ava ilable online search data. In addition to having a rigorous statistical foundation, ARGO outperforms all previously available Google-search-based tracking models, including the latest version of Google Flu Trends, even though it uses only low-quality search data as input from publicly available Google Trends and Google Correlate websites. ARGO not only incorporates the seasonality in influenza epidemics but also captures changes in peoples online search behavior over time. ARGO is also flexible, self-correcting, robust, and scalable, making it a potentially powerful tool that can be used for real-time tracking of other social events at multiple temporal and spatial resolutions.
The Coronavirus Disease 2019 (COVID-19) pandemic has caused tremendous amount of deaths and a devastating impact on the economic development all over the world. Thus, it is paramount to control its further transmission, for which purpose it is necess ary to find the mechanism of its transmission process and evaluate the effect of different control strategies. To deal with these issues, we describe the transmission of COVID-19 as an explosive Markov process with four parameters. The state transitions of the proposed Markov process can clearly disclose the terrible explosion and complex heterogeneity of COVID-19. Based on this, we further propose a simulation approach with heterogeneous infections. Experimentations show that our approach can closely track the real transmission process of COVID-19, disclose its transmission mechanism, and forecast the transmission under different non-drug intervention strategies. More importantly, our approach can helpfully develop effective strategies for controlling COVID-19 and appropriately compare their control effect in different countries/cities.
Big data generated from the Internet offer great potential for predictive analysis. Here we focus on using online users Internet search data to forecast unemployment initial claims weeks into the future, which provides timely insights into the direct ion of the economy. To this end, we present a novel method PRISM (Penalized Regression with Inferred Seasonality Module), which uses publicly available online search data from Google. PRISM is a semi-parametric method, motivated by a general state-space formulation, and employs nonparametric seasonal decomposition and penalized regression. For forecasting unemployment initial claims, PRISM outperforms all previously available methods, including forecasting during the 2008-2009 financial crisis period and near-future forecasting during the COVID-19 pandemic period, when unemployment initial claims both rose rapidly. The timely and accurate unemployment forecasts by PRISM could aid government agencies and financial institutions to assess the economic trend and make well-informed decisions, especially in the face of economic turbulence.
Using the action sequence data (i.e., log data) from the problem-solving in technology-rich environments assessment on the 2012 Programme for the International Assessment of Adult Competencies survey, the current study examines the associations betwe en adult digital problem-solving behavior and several demographic and cognitive variables. Action sequence features extracted using multidimensional scaling (Tang, Wang, He, Liu, & Ying, 2019) and sequence-to-sequence autoencoders (Tang, Wang, Liu, & Ying, 2019) were used to predict test-taker external characteristics. Features extracted from action sequences were consistently found to contain more information on demographic and cognitive characteristics than final scores. Partial least squares analyses further revealed systematic associations between behavioral patterns and demographic/cognitive characteristics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا