ترغب بنشر مسار تعليمي؟ اضغط هنا

Noise Injection-based Regularization for Point Cloud Processing

114   0   0.0 ( 0 )
 نشر من قبل Xiao Zang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Noise injection-based regularization, such as Dropout, has been widely used in image domain to improve the performance of deep neural networks (DNNs). However, efficient regularization in the point cloud domain is rarely exploited, and most of the state-of-the-art works focus on data augmentation-based regularization. In this paper, we, for the first time, perform systematic investigation on noise injection-based regularization for point cloud-domain DNNs. To be specific, we propose a series of regularization techniques, namely DropFeat, DropPoint and DropCluster, to perform noise injection on the point feature maps at the feature level, point level and cluster level, respectively. We also empirically analyze the impacts of different factors, including dropping rate, cluster size and dropping position, to obtain useful insights and general deployment guidelines, which can facilitate the adoption of our approaches across different datasets and DNN architectures. We evaluate our proposed approaches on various DNN models for different point cloud processing tasks. Experimental results show our approaches enable significant performance improvement. Notably, our DropCluster brings 1.5%, 1.3% and 0.8% higher overall accuracy for PointNet, PointNet++ and DGCNN, respectively, on ModelNet40 shape classification dataset. On ShapeNet part segmentation dataset, DropCluster brings 0.5%, 0.5% and 0.2% mean Intersection-over-union (IoU) increase for PointNet, PointNet++ and DGCNN, respectively. On S3DIS semantic segmentation dataset, DropCluster improves the mean IoU of PointNet, PointNet++ and DGCNN by 3.2%, 2.9% and 3.7%, respectively. Meanwhile, DropCluster also enables the overall accuracy increase for these three popular backbone DNNs by 2.4%, 2.2% and 1.8%, respectively.

قيم البحث

اقرأ أيضاً

As 3D point cloud analysis has received increasing attention, the insufficient scale of point cloud datasets and the weak generalization ability of networks become prominent. In this paper, we propose a simple and effective augmentation method for th e point cloud data, named PointCutMix, to alleviate those problems. It finds the optimal assignment between two point clouds and generates new training data by replacing the points in one sample with their optimal assigned pairs. Two replacement strategies are proposed to adapt to the accuracy or robustness requirement for different tasks, one of which is to randomly select all replacing points while the other one is to select k nearest neighbors of a single random point. Both strategies consistently and significantly improve the performance of various models on point cloud classification problems. By introducing the saliency maps to guide the selection of replacing points, the performance further improves. Moreover, PointCutMix is validated to enhance the model robustness against the point attack. It is worth noting that when using as a defense method, our method outperforms the state-of-the-art defense algorithms. The code is available at:https://github.com/cuge1995/PointCutMix
Exploiting convolutional neural networks for point cloud processing is quite challenging, due to the inherent irregular distribution and discrete shape representation of point clouds. To address these problems, many handcrafted convolution variants h ave sprung up in recent years. Though with elaborate design, these variants could be far from optimal in sufficiently capturing diverse shapes formed by discrete points. In this paper, we propose PointSeaConv, i.e., a novel differential convolution search paradigm on point clouds. It can work in a purely data-driven manner and thus is capable of auto-creating a group of suitable convolutions for geometric shape modeling. We also propose a joint optimization framework for simultaneous search of internal convolution and external architecture, and introduce epsilon-greedy algorithm to alleviate the effect of discretization error. As a result, PointSeaNet, a deep network that is sufficient to capture geometric shapes at both convolution level and architecture level, can be searched out for point cloud processing. Extensive experiments strongly evidence that our proposed PointSeaNet surpasses current handcrafted deep models on challenging benchmarks across multiple tasks with remarkable margins.
We present a network architecture for processing point clouds that directly operates on a collection of points represented as a sparse set of samples in a high-dimensional lattice. Naively applying convolutions on this lattice scales poorly, both in terms of memory and computational cost, as the size of the lattice increases. Instead, our network uses sparse bilateral convolutional layers as building blocks. These layers maintain efficiency by using indexing structures to apply convolutions only on occupied parts of the lattice, and allow flexible specifications of the lattice structure enabling hierarchical and spatially-aware feature learning, as well as joint 2D-3D reasoning. Both point-based and image-based representations can be easily incorporated in a network with such layers and the resulting model can be trained in an end-to-end manner. We present results on 3D segmentation tasks where our approach outperforms existing state-of-the-art techniques.
Data augmentation is an effective regularization strategy to alleviate the overfitting, which is an inherent drawback of the deep neural networks. However, data augmentation is rarely considered for point cloud processing despite many studies proposi ng various augmentation methods for image data. Actually, regularization is essential for point clouds since lack of generality is more likely to occur in point cloud due to small datasets. This paper proposes a Rigid Subset Mix (RSMix), a novel data augmentation method for point clouds that generates a virtual mixed sample by replacing part of the sample with shape-preserved subsets from another sample. RSMix preserves structural information of the point cloud sample by extracting subsets from each sample without deformation using a neighboring function. The neighboring function was carefully designed considering unique properties of point cloud, unordered structure and non-grid. Experiments verified that RSMix successfully regularized the deep neural networks with remarkable improvement for shape classification. We also analyzed various combinations of data augmentations including RSMix with single and multi-view evaluations, based on abundant ablation studies.
We present a new versatile building block for deep point cloud processing architectures that is equally suited for diverse tasks. This building block combines the ideas of spatial transformers and multi-view convolutional networks with the efficiency of standard convolutional layers in two and three-dimensional dense grids. The new block operates via multiple parallel heads, whereas each head differentiably rasterizes feature representations of individual points into a low-dimensional space, and then uses dense convolution to propagate information across points. The results of the processing of individual heads are then combined together resulting in the update of point features. Using the new block, we build architectures for both discriminative (point cloud segmentation, point cloud classification) and generative (point cloud inpainting and image-based point cloud reconstruction) tasks. The resulting architectures achieve state-of-the-art performance for these tasks, demonstrating the versatility and universality of the new block for point cloud processing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا