ترغب بنشر مسار تعليمي؟ اضغط هنا

PointCutMix: Regularization Strategy for Point Cloud Classification

99   0   0.0 ( 0 )
 نشر من قبل Jinlai Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

As 3D point cloud analysis has received increasing attention, the insufficient scale of point cloud datasets and the weak generalization ability of networks become prominent. In this paper, we propose a simple and effective augmentation method for the point cloud data, named PointCutMix, to alleviate those problems. It finds the optimal assignment between two point clouds and generates new training data by replacing the points in one sample with their optimal assigned pairs. Two replacement strategies are proposed to adapt to the accuracy or robustness requirement for different tasks, one of which is to randomly select all replacing points while the other one is to select k nearest neighbors of a single random point. Both strategies consistently and significantly improve the performance of various models on point cloud classification problems. By introducing the saliency maps to guide the selection of replacing points, the performance further improves. Moreover, PointCutMix is validated to enhance the model robustness against the point attack. It is worth noting that when using as a defense method, our method outperforms the state-of-the-art defense algorithms. The code is available at:https://github.com/cuge1995/PointCutMix



قيم البحث

اقرأ أيضاً

Data augmentation is an effective regularization strategy to alleviate the overfitting, which is an inherent drawback of the deep neural networks. However, data augmentation is rarely considered for point cloud processing despite many studies proposi ng various augmentation methods for image data. Actually, regularization is essential for point clouds since lack of generality is more likely to occur in point cloud due to small datasets. This paper proposes a Rigid Subset Mix (RSMix), a novel data augmentation method for point clouds that generates a virtual mixed sample by replacing part of the sample with shape-preserved subsets from another sample. RSMix preserves structural information of the point cloud sample by extracting subsets from each sample without deformation using a neighboring function. The neighboring function was carefully designed considering unique properties of point cloud, unordered structure and non-grid. Experiments verified that RSMix successfully regularized the deep neural networks with remarkable improvement for shape classification. We also analyzed various combinations of data augmentations including RSMix with single and multi-view evaluations, based on abundant ablation studies.
113 - Xiao Zang , Yi Xie , Siyu Liao 2021
Noise injection-based regularization, such as Dropout, has been widely used in image domain to improve the performance of deep neural networks (DNNs). However, efficient regularization in the point cloud domain is rarely exploited, and most of the st ate-of-the-art works focus on data augmentation-based regularization. In this paper, we, for the first time, perform systematic investigation on noise injection-based regularization for point cloud-domain DNNs. To be specific, we propose a series of regularization techniques, namely DropFeat, DropPoint and DropCluster, to perform noise injection on the point feature maps at the feature level, point level and cluster level, respectively. We also empirically analyze the impacts of different factors, including dropping rate, cluster size and dropping position, to obtain useful insights and general deployment guidelines, which can facilitate the adoption of our approaches across different datasets and DNN architectures. We evaluate our proposed approaches on various DNN models for different point cloud processing tasks. Experimental results show our approaches enable significant performance improvement. Notably, our DropCluster brings 1.5%, 1.3% and 0.8% higher overall accuracy for PointNet, PointNet++ and DGCNN, respectively, on ModelNet40 shape classification dataset. On ShapeNet part segmentation dataset, DropCluster brings 0.5%, 0.5% and 0.2% mean Intersection-over-union (IoU) increase for PointNet, PointNet++ and DGCNN, respectively. On S3DIS semantic segmentation dataset, DropCluster improves the mean IoU of PointNet, PointNet++ and DGCNN by 3.2%, 2.9% and 3.7%, respectively. Meanwhile, DropCluster also enables the overall accuracy increase for these three popular backbone DNNs by 2.4%, 2.2% and 1.8%, respectively.
As the basic task of point cloud analysis, classification is fundamental but always challenging. To address some unsolved problems of existing methods, we propose a network that captures geometric features of point clouds for better representations. To achieve this, on the one hand, we enrich the geometric information of points in low-level 3D space explicitly. On the other hand, we apply CNN-based structures in high-level feature spaces to learn local geometric context implicitly. Specifically, we leverage an idea of error-correcting feedback structure to capture the local features of point clouds comprehensively. Furthermore, an attention module based on channel affinity assists the feature map to avoid possible redundancy by emphasizing its distinct channels. The performance on both synthetic and real-world point clouds datasets demonstrate the superiority and applicability of our network. Comparing with other state-of-the-art methods, our approach balances accuracy and efficiency.
Point cloud analysis is attracting attention from Artificial Intelligence research since it can be widely used in applications such as robotics, Augmented Reality, self-driving. However, it is always challenging due to irregularities, unorderedness, and sparsity. In this article, we propose a novel network named Dense-Resolution Network (DRNet) for point cloud analysis. Our DRNet is designed to learn local point features from the point cloud in different resolutions. In order to learn local point groups more effectively, we present a novel grouping method for local neighborhood searching and an error-minimizing module for capturing local features. In addition to validating the network on widely used point cloud segmentation and classification benchmarks, we also test and visualize the performance of the components. Comparing with other state-of-the-art methods, our network shows superiority on ModelNet40, ShapeNet synthetic and ScanObjectNN real point cloud datasets.
We present a novel compact point cloud representation that is inherently invariant to scale, coordinate change and point permutation. The key idea is to parametrize a distance field around an individual shape into a unique, canonical, and compact vec tor in an unsupervised manner. We firstly project a distance field to a $4$D canonical space using singular value decomposition. We then train a neural network for each instance to non-linearly embed its distance field into network parameters. We employ a bias-free Extreme Learning Machine (ELM) with ReLU activation units, which has scale-factor commutative property between layers. We demonstrate the descriptiveness of the instance-wise, shape-embedded network parameters by using them to classify shapes in $3$D datasets. Our learning-based representation requires minimal augmentation and simple neural networks, where previous approaches demand numerous representations to handle coordinate change and point permutation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا