ترغب بنشر مسار تعليمي؟ اضغط هنا

Impacts of new small-scale N-body simulations on dark matter annihilations constrained from cosmological 21cm line observations

125   0   0.0 ( 0 )
 نشر من قبل Nagisa Hiroshima
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We revisit constraints on annihilating dark matter based on the global 21cm signature observed by EDGES. For this purpose, we used the numerical data of the latest N-body simulation performed by state-of-art standard in order to estimate the boost factor at high redshifts ($z$ = 10 - 100), which enhances the annihilation of dark matter in course of structure formation. By taking into account to what fraction injected energy from dark matter annihilation contributes to ionization, excitation and heating of intergalactic medium during dark ages, we estimated how large the global 21cm absorption can be. By assuming the thermal freezeout scenario, we find that $m_{rm DM} < 15$ GeV and $m_{rm DM} < 3$ GeV have been excluded at 95$%$ C.L. for the annihilation modes into $bbar{b}$ and $e^+ e^-$, respectively.



قيم البحث

اقرأ أيضاً

Self-interacting dark matter (SIDM) models have the potential to solve the small-scale problems that arise in the cold dark matter paradigm. Simulations are a powerful tool for studying SIDM in the context of astrophysics, but it is numerically chall enging to study differential cross-sections that favour small-angle scattering, as in light-mediator models. Here, we present a novel approach to model frequent scattering based on an effective drag force, which we have implemented into the N-body code gadget-3. In a range of test problems, we demonstrate that our implementation accurately models frequent scattering. Our implementation can be used to study differences between SIDM models that predict rare and frequent scattering. We simulate core formation in isolated dark matter haloes, as well as major mergers of galaxy clusters and find that SIDM models with rare and frequent interactions make different predictions. In particular, frequent interactions are able to produce larger offsets between the distribution of galaxies and dark matter in equal-mass mergers.
We study the interaction of an electrically charged component of the dark matter with a magnetized galactic interstellar medium (ISM) of (rotating) spiral galaxies. For the observed ordered component of the field, $Bsim mu$G, we find that the accumul ated Lorentz interactions between the charged particles and the ISM will extract an order unity fraction of the disk angular momentum over the few Gyr Galactic lifetime unless $q/e lesssim 10^{-13pm 1},m,c^2/$ GeV if all the dark matter is charged. The bound is weakened by factor $f_{rm qdm}^{-1/2}$ if only a mass fraction $f_{rm qdm}gtrsim0.13$ of the dark matter is charged. Here $q$ and $m$ are the dark matter particle mass and charge. If $f_{rm qdm}approx1$ this bound excludes charged dark matter produced via the freeze-in mechanism for $m lesssim$ TeV/$c^2$. This bound on $q/m$, obtained from Milky Way parameters, is rough and not based on any precise empirical test. However this bound is extremely strong and should motivate further work to better model the interaction of charged dark matter with ordered and disordered magnetic fields in galaxies and clusters of galaxies; to develop precise tests for the presence of charged dark matter based on better estimates of angular momentum exchange; and also to better understand how charged dark matter might modify the growth of magnetic fields, and the formation and interaction histories of galaxies, galaxy groups, and clusters.
We present a general framework for obtaining robust bounds on the nature of dark matter using cosmological $N$-body simulations and Lyman-alpha forest data. We construct an emulator of hydrodynamical simulations, which is a flexible, accurate and com putationally-efficient model for predicting the response of the Lyman-alpha forest flux power spectrum to different dark matter models, the state of the intergalactic medium (IGM) and the primordial power spectrum. The emulator combines a flexible parameterization for the small-scale suppression in the matter power spectrum arising in non-cold dark matter models, with an improved IGM model. We then demonstrate how to optimize the emulator for the case of ultra-light axion dark matter, presenting tests of convergence. We also carry out cross-validation tests of the accuracy of flux power spectrum prediction. This framework can be optimized for the analysis of many other dark matter candidates, e.g., warm or interacting dark matter. Our work demonstrates that a combination of an optimized emulator and cosmological effective theories, where many models are described by a single set of equations, is a powerful approach for robust and computationally-efficient inference from the cosmic large-scale structure.
We make detailed theoretical predictions for the assembly properties of the Local Group (LG) in the standard LambdaCDM cosmological model. We use three cosmological N-body dark matter simulations from the CLUES project, which are designed to reproduc e the main dynamical features of the matter distribution down to the scale of a few Mpc around the LG. Additionally, we use the results of an unconstrained simulation with a sixty times larger volume to calibrate the influence of cosmic variance. We characterize the Mass Aggregation History (MAH) for each halo by three characteristic times, the formation, assembly and last major merger times. A major merger is defined by a minimal mass ratio of 10:1. We find that the three LGs share a similar MAH with formation and last major merger epochs placed on average approx 10 - 12 Gyr ago. Between 12% and 17% of the halos in the mass range 5 x 10^11 Msol/h < M_h < 5 x 10^12 Msol/h have a similar MAH. In a set of pairs of halos within the same mass range, a fraction of 1% to 3% share similar formation properties as both halos in the simulated LG. An unsolved question posed by our results is the dynamical origin of the MAH of the LGs. The isolation criteria commonly used to define LG-like halos in unconstrained simulations do not narrow down the halo population into a set with quiet MAHs, nor does a further constraint to reside in a low density environment. The quiet MAH of the LGs provides a favorable environment for the formation of disk galaxies like the Milky Way and M31. The timing for the beginning of the last major merger in the Milky Way dark matter halo matches with the gas rich merger origin for the thick component in the galactic disk. Our results support the view that the specific large and mid scale environment around the Local Group play a critical role in shaping its MAH and hence its baryonic structure at present.
We argue that the global signal of neutral hydrogen 21cm line can be a powerful probe of primordial power spectrum on small scales. Since the amplitude of small scale primordial fluctuations is important to determine the early structure formation and the timing when the sources of Lyman ${alpha}$ photons are produced, they in turn affect the neutral hydrogen 21cm line signal. We show that the information of the position of the absorption trough can severely constrain the small scale amplitude of primordial fluctuations once astrophysical parameters relevant to the 21cm line signal are fixed. We also discuss how the uncertainties of astrophysical parameters affect the constraints.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا