ﻻ يوجد ملخص باللغة العربية
We present a general framework for obtaining robust bounds on the nature of dark matter using cosmological $N$-body simulations and Lyman-alpha forest data. We construct an emulator of hydrodynamical simulations, which is a flexible, accurate and computationally-efficient model for predicting the response of the Lyman-alpha forest flux power spectrum to different dark matter models, the state of the intergalactic medium (IGM) and the primordial power spectrum. The emulator combines a flexible parameterization for the small-scale suppression in the matter power spectrum arising in non-cold dark matter models, with an improved IGM model. We then demonstrate how to optimize the emulator for the case of ultra-light axion dark matter, presenting tests of convergence. We also carry out cross-validation tests of the accuracy of flux power spectrum prediction. This framework can be optimized for the analysis of many other dark matter candidates, e.g., warm or interacting dark matter. Our work demonstrates that a combination of an optimized emulator and cosmological effective theories, where many models are described by a single set of equations, is a powerful approach for robust and computationally-efficient inference from the cosmic large-scale structure.
We demonstrate that testing for self-similarity in scale-free simulations provides an excellent tool to quantify the resolution at small scales of cosmological N-body simulations. Analysing two-point correlation functions measured in simulations usin
Self-interacting dark matter (SIDM) models have the potential to solve the small-scale problems that arise in the cold dark matter paradigm. Simulations are a powerful tool for studying SIDM in the context of astrophysics, but it is numerically chall
We revisit constraints on annihilating dark matter based on the global 21cm signature observed by EDGES. For this purpose, we used the numerical data of the latest N-body simulation performed by state-of-art standard in order to estimate the boost fa
Gravitational softening length is one of the key parameters to properly set up a cosmological $N$-body simulation. In this paper, we perform a large suit of high-resolution $N$-body simulations to revise the optimal softening scheme proposed by Power
We present a new method for generating initial conditions for numerical cosmological simulations in which massive neutrinos are treated as an extra set of N-body (collisionless) particles. It allows us to accurately follow the density field for both