ترغب بنشر مسار تعليمي؟ اضغط هنا

Knowing What VQA Does Not: Pointing to Error-Inducing Regions to Improve Explanation Helpfulness

79   0   0.0 ( 0 )
 نشر من قبل Arijit Ray
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Attention maps, a popular heatmap-based explanation method for Visual Question Answering (VQA), are supposed to help users understand the model by highlighting portions of the image/question used by the model to infer answers. However, we see that users are often misled by current attention map visualizations that point to relevant regions despite the model producing an incorrect answer. Hence, we propose Error Maps that clarify the error by highlighting image regions where the model is prone to err. Error maps can indicate when a correctly attended region may be processed incorrectly leading to an incorrect answer, and hence, improve users understanding of those cases. To evaluate our new explanations, we further introduce a metric that simulates users interpretation of explanations to evaluate their potential helpfulness to understand model correctness. We finally conduct user studies to see that our new explanations help users understand model correctness better than baselines by an expected 30% and that our proxy helpfulness metrics correlate strongly ($rho$>0.97) with how well users can predict model correctness.



قيم البحث

اقرأ أيضاً

78 - Ruiwen Li , Jiani Li 2021
Recent years have seen the introduction of a range of methods for post-hoc explainability of image classifier predictions. However, these post-hoc explanations may not always align perfectly with classifier predictions, which poses a significant chal lenge when attempting to debug models based on such explanations. To this end, we seek a methodology that can improve alignment between model predictions and explanation method that is both agnostic to the model and explanation classes and which does not require ground truth explanations. We achieve this through a novel explanation-driven data augmentation (EDDA) method that augments the training data with occlusions of existing data stemming from model-explanations; this is based on the simple motivating principle that occluding salient regions for the model prediction should decrease the model confidence in the prediction, while occluding non-salient regions should not change the prediction -- if the model and explainer are aligned. To verify that this augmentation method improves model and explainer alignment, we evaluate the methodology on a variety of datasets, image classification models, and explanation methods. We verify in all cases that our explanation-driven data augmentation method improves alignment of the model and explanation in comparison to no data augmentation and non-explanation driven data augmentation methods. In conclusion, this approach provides a novel model- and explainer-agnostic methodology for improving alignment between model predictions and explanations, which we see as a critical step forward for practical deployment and debugging of image classification models.
The presence of objects that are confusingly similar to the tracked target, poses a fundamental challenge in appearance-based visual tracking. Such distractor objects are easily misclassified as the target itself, leading to eventual tracking failure . While most methods strive to suppress distractors through more powerful appearance models, we take an alternative approach. We propose to keep track of distractor objects in order to continue tracking the target. To this end, we introduce a learned association network, allowing us to propagate the identities of all target candidates from frame-to-frame. To tackle the problem of lacking ground-truth correspondences between distractor objects in visual tracking, we propose a training strategy that combines partial annotations with self-supervision. We conduct comprehensive experimental validation and analysis of our approach on several challenging datasets. Our tracker sets a new state-of-the-art on six benchmarks, achieving an AUC score of 67.1% on LaSOT and a +5.8% absolute gain on the OxUvA long-term dataset.
Most existing image retrieval systems use text queries as a way for the user to express what they are looking for. However, fine-grained image retrieval often requires the ability to also express where in the image the content they are looking for is . The text modality can only cumbersomely express such localization preferences, whereas pointing is a more natural fit. In this paper, we propose an image retrieval setup with a new form of multimodal queries, where the user simultaneously uses both spoken natural language (the what) and mouse traces over an empty canvas (the where) to express the characteristics of the desired target image. We then describe simple modifications to an existing image retrieval model, enabling it to operate in this setup. Qualitative and quantitative experiments show that our model effectively takes this spatial guidance into account, and provides significantly more accurate retrieval results compared to text-only equivalent systems.
Existing VQA datasets contain questions with varying levels of complexity. While the majority of questions in these datasets require perception for recognizing existence, properties, and spatial relationships of entities, a significant portion of que stions pose challenges that correspond to reasoning tasks - tasks that can only be answered through a synthesis of perception and knowledge about the world, logic and / or reasoning. Analyzing performance across this distinction allows us to notice when existing VQA models have consistency issues; they answer the reasoning questions correctly but fail on associated low-level perception questions. For example, in Figure 1, models answer the complex reasoning question Is the banana ripe enough to eat? correctly, but fail on the associated perception question Are the bananas mostly green or yellow? indicating that the model likely answered the reasoning question correctly but for the wrong reason. We quantify the extent to which this phenomenon occurs by creating a new Reasoning split of the VQA dataset and collecting VQA-introspect, a new dataset1 which consists of 238K new perception questions which serve as sub questions corresponding to the set of perceptual tasks needed to effectively answer the complex reasoning questions in the Reasoning split. Our evaluation shows that state-of-the-art VQA models have comparable performance in answering perception and reasoning questions, but suffer from consistency problems. To address this shortcoming, we propose an approach called Sub-Question Importance-aware Network Tuning (SQuINT), which encourages the model to attend to the same parts of the image when answering the reasoning question and the perception sub question. We show that SQuINT improves model consistency by ~5%, also marginally improving performance on the Reasoning questions in VQA, while also displaying better attention maps.
Being able to explain the prediction to clinical end-users is a necessity to leverage the power of AI models for clinical decision support. For medical images, saliency maps are the most common form of explanation. The maps highlight important featur es for AI models prediction. Although many saliency map methods have been proposed, it is unknown how well they perform on explaining decisions on multi-modal medical images, where each modality/channel carries distinct clinical meanings of the same underlying biomedical phenomenon. Understanding such modality-dependent features is essential for clinical users interpretation of AI decisions. To tackle this clinically important but technically ignored problem, we propose the MSFI (Modality-Specific Feature Importance) metric to examine whether saliency maps can highlight modality-specific important features. MSFI encodes the clinical requirements on modality prioritization and modality-specific feature localization. Our evaluations on 16 commonly used saliency map methods, including a clinician user study, show that although most saliency map methods captured modality importance information in general, most of them failed to highlight modality-specific important features consistently and precisely. The evaluation results guide the choices of saliency map methods and provide insights to propose new ones targeting clinical applications.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا