ﻻ يوجد ملخص باللغة العربية
To reconstruct spectral signals from multi-channel observations, in particular trichromatic RGBs, has recently emerged as a promising alternative to traditional scanning-based spectral imager. It has been proven that the reconstruction accuracy relies heavily on the spectral response of the RGB camera in use. To improve accuracy, data-driven algorithms have been proposed to retrieve the best response curves of existing RGB cameras, or even to design brand new three-channel response curves. Instead, this paper explores the filter-array based color imaging mechanism of existing RGB cameras, and proposes to design the IR-cut filter properly for improved spectral recovery, which stands out as an in-between solution with better trade-off between reconstruction accuracy and implementation complexity. We further propose a deep learning based spectral reconstruction method, which allows to recover the illumination spectrum as well. Experiment results with both synthetic and real images under daylight illumination have shown the benefits of our IR-cut filter tuning method and our illumination-aware spectral reconstruction method.
Capturing visual image with a hyperspectral camera has been successfully applied to many areas due to its narrow-band imaging technology. Hyperspectral reconstruction from RGB images denotes a reverse process of hyperspectral imaging by discovering a
Hyperspectral imaging is one of the most promising techniques for intraoperative tissue characterisation. Snapshot mosaic cameras, which can capture hyperspectral data in a single exposure, have the potential to make a real-time hyperspectral imaging
Hyperspectral signal reconstruction aims at recovering the original spectral input that produced a certain trichromatic (RGB) response from a capturing device or observer. Given the heavily underconstrained, non-linear nature of the problem, traditio
This paper presents a quarter Laplacian filter that can preserve corners and edges during image smoothing. Its support region is $2times2$, which is smaller than the $3times3$ support region of Laplacian filter. Thus, it is more local. Moreover, this
Hyperspectral imaging enables versatile applications due to its competence in capturing abundant spatial and spectral information, which are crucial for identifying substances. However, the devices for acquiring hyperspectral images are expensive and