ترغب بنشر مسار تعليمي؟ اضغط هنا

Quarter Laplacian Filter for Edge Aware Image Processing

364   0   0.0 ( 0 )
 نشر من قبل Yuanhao Gong
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents a quarter Laplacian filter that can preserve corners and edges during image smoothing. Its support region is $2times2$, which is smaller than the $3times3$ support region of Laplacian filter. Thus, it is more local. Moreover, this filter can be implemented via the classical box filter, leading to high performance for real time applications. Finally, we show its edge preserving property in several image processing tasks, including image smoothing, texture enhancement, and low-light image enhancement. The proposed filter can be adopted in a wide range of image processing applications.



قيم البحث

اقرأ أيضاً

122 - Keyan Ding , Kede Ma , Shiqi Wang 2020
The performance of objective image quality assessment (IQA) models has been evaluated primarily by comparing model predictions to human quality judgments. Perceptual datasets gathered for this purpose have provided useful benchmarks for improving IQA methods, but their heavy use creates a risk of overfitting. Here, we perform a large-scale comparison of IQA models in terms of their use as objectives for the optimization of image processing algorithms. Specifically, we use eleven full-reference IQA models to train deep neural networks for four low-level vision tasks: denoising, deblurring, super-resolution, and compression. Subjective testing on the optimized images allows us to rank the competing models in terms of their perceptual performance, elucidate their relative advantages and disadvantages in these tasks, and propose a set of desirable properties for incorporation into future IQA models.
150 - Bo Sun , Junchi Yan , Xiao Zhou 2021
To reconstruct spectral signals from multi-channel observations, in particular trichromatic RGBs, has recently emerged as a promising alternative to traditional scanning-based spectral imager. It has been proven that the reconstruction accuracy relie s heavily on the spectral response of the RGB camera in use. To improve accuracy, data-driven algorithms have been proposed to retrieve the best response curves of existing RGB cameras, or even to design brand new three-channel response curves. Instead, this paper explores the filter-array based color imaging mechanism of existing RGB cameras, and proposes to design the IR-cut filter properly for improved spectral recovery, which stands out as an in-between solution with better trade-off between reconstruction accuracy and implementation complexity. We further propose a deep learning based spectral reconstruction method, which allows to recover the illumination spectrum as well. Experiment results with both synthetic and real images under daylight illumination have shown the benefits of our IR-cut filter tuning method and our illumination-aware spectral reconstruction method.
392 - Ke Yu , Zexian Li , Yue Peng 2021
Image Signal Processor (ISP) is a crucial component in digital cameras that transforms sensor signals into images for us to perceive and understand. Existing ISP designs always adopt a fixed architecture, e.g., several sequential modules connected in a rigid order. Such a fixed ISP architecture may be suboptimal for real-world applications, where camera sensors, scenes and tasks are diverse. In this study, we propose a novel Reconfigurable ISP (ReconfigISP) whose architecture and parameters can be automatically tailored to specific data and tasks. In particular, we implement several ISP modules, and enable backpropagation for each module by training a differentiable proxy, hence allowing us to leverage the popular differentiable neural architecture search and effectively search for the optimal ISP architecture. A proxy tuning mechanism is adopted to maintain the accuracy of proxy networks in all cases. Extensive experiments conducted on image restoration and object detection, with different sensors, light conditions and efficiency constraints, validate the effectiveness of ReconfigISP. Only hundreds of parameters need tuning for every task.
85 - Tingting Zhang 2020
The parameter selection is crucial to regularization based image restoration methods. Generally speaking, a spatially fixed parameter for regularization item in the whole image does not perform well for both edge and smooth areas. A larger parameter of regularization item reduces noise better in smooth areas but blurs edge regions, while a small parameter sharpens edge but causes residual noise. In this paper, an automated spatially adaptive regularization model, which combines the harmonic and TV models, is proposed for reconstruction of noisy and blurred images. In the proposed model, it detects the edges and then spatially adjusts the parameters of Tikhonov and TV regularization terms for each pixel according to the edge information. Accordingly, the edge information matrix will be also dynamically updated during the iterations. Computationally, the newly-established model is convex, which can be solved by the semi-proximal alternating direction method of multipliers (sPADMM) with a linear-rate convergence rate. Numerical simulation results demonstrate that the proposed model effectively reserves the image edges and eliminates the noise and blur at the same time. In comparison to state-of-the-art algorithms, it outperforms other methods in terms of PSNR, SSIM and visual quality.
In this work, we present Eformer - Edge enhancement based transformer, a novel architecture that builds an encoder-decoder network using transformer blocks for medical image denoising. Non-overlapping window-based self-attention is used in the transf ormer block that reduces computational requirements. This work further incorporates learnable Sobel-Feldman operators to enhance edges in the image and propose an effective way to concatenate them in the intermediate layers of our architecture. The experimental analysis is conducted by comparing deterministic learning and residual learning for the task of medical image denoising. To defend the effectiveness of our approach, our model is evaluated on the AAPM-Mayo Clinic Low-Dose CT Grand Challenge Dataset and achieves state-of-the-art performance, $i.e.$, 43.487 PSNR, 0.0067 RMSE, and 0.9861 SSIM. We believe that our work will encourage more research in transformer-based architectures for medical image denoising using residual learning.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا