ﻻ يوجد ملخص باللغة العربية
Several indicators have pointed to the presence of an Electron Cloud (EC) in some of the CERN accelerators, when operating with closely spaced bunched beams. In particular, spurious signals on the pick ups used for beam detection, pressure rise and beam instabilities were observed at the Proton Synchrotron (PS) during the last stage of preparation of the beams for the Large Hadron Collider (LHC), as well as at the Super Proton Synchrotron (SPS). Since the LHC has started operation in 2009, typical electron cloud phenomena have appeared also in this machine, when running with trains of closely packed bunches (i.e. with spacings below 150ns). Beside the above mentioned indicators, other typical signatures were seen in this machine (due to its operation mode and/or more refined detection possibilities), like heat load in the cold dipoles, bunch dependent emittance growth and degraded lifetime in store and bunch-by-bunch stable phase shift to compensate for the energy loss due to the electron cloud. An overview of the electron cloud status in the different CERN machines (PS, SPS, LHC) will be presented in this paper, with a special emphasis on the dangers for future operation with more intense beams and the necessary countermeasures to mitigate or suppress the effect.
The UA9 setup, installed in the Super Proton Synchrotron (SPS) at CERN, was exploited for a proof of principle of the double-crystal scenario, proposed to measure the electric and the magnetic moments of short-lived baryons in a high-energy hadron co
In this paper, we discuss an experimental layout for the two-crystals scenario at the Super Proton Synchrotron (SPS) accelerator. The research focuses on a fixed target setup at the circulating machine in a frame of the Physics Beyond Colliders (PBC)
Recent studies have shown that the prospects for significantly increasing bunch intensities in the LHC for the luminosity upgrade (HL-LHC) may be severely limited by the available cryogenic cooling capacity and the electron-cloud (EC) driven beam ins
After a successful scrubbing run in the beginning of 2011, the LHC can be presently operated with high intensity proton beams with 50 ns bunch spacing. However, strong electron cloud effects were observed during machine studies with the nominal beam
During the beam commissioning of the Large Hadron Collider (LHC) with 150, 75, 50 and 25-ns bunch spacing, important electron-cloud effects, like pressure rise, cryogenic heat load, beam instabilities or emittance growth, were observed. A method has